

    
      
          
            
  
Panhandler


Contents:


	Welcome to Panhandler!
	Release History





	Running Panhandler
	Quick Start

	Running the Panhandler Docker Container

	Building Panhandler

	Running Panhandler manually

	Requirements

	Windows Installation

	Switching between Latest and Develop Containers

	Keeping Up to Date





	Using Panhandler
	Access the web portal

	Set the Configuration Target

	Choose Skillets to View by Collection

	Select the Skillet to Load

	Understanding what will be pushed

	Adding a New Skillet Repository

	Panhandler Environments





	Skillets
	IronSkillet

	Basic concepts

	YAML syntax

	Metadata details

	Defining Variables for User input

	Hints

	Creating and Editing Skillets

	PAN-OS Validation Skillets

	Validation Tests

	PAN-OS Validation Examples

	Hints, Tips, Tricks

	Creating and Debugging Validation Skillets

	Skillet Debugger





	Example Skillet
	XML Fragment

	Skillet file

	Rendered Form





	More Example Skillets
	Example Skillets by Type

	Example Skillets by Feature

	External Skillet Repositories





	When things go wrong
	Ensuring you have the latest

	Restarting the docker container

	Clearing the cache

	Cancelling a Task

	Removing a Repository

	Troubleshooting Docker Skillets

	The hammer approach

	File a bug










About

Panhandler is a tool to manage and share PAN-OS configuration sets called Skillets.
A configuration set can be a full device configuration, or a set of configuration elements.
Panhandler allows you to import git repositories that contain
one or more of these configuration templates. Each template contains a set of configuration elements and variables that can
be customized for each deployment. Variables are presented in an auto-generated web form for an operator to complete.
Once complete, the template is rendered and pushed to a PAN-OS device.

Skillets allow an architect or builder to create a fully customizable configuration set with
the correct level of abstraction for their organization’s needs. For example, the PAN-OS GUI
may offer 20 different options for a given feature, however, in your organization you may
want to standardize on 18 of those and allow customization of only 2 options. Skillets allow
you to do just that.

For more information about Skillets, see the
Live community page [https://live.paloaltonetworks.com/t5/Skillets/ct-p/Skillets].

For more information about building Skillets, see the
Skillet Builder Documentation [https://skilletbuilder.readthedocs.io/en/latest/].



Disclaimer

This software is provided without support, warranty, or guarantee.
Use at your own risk.




Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Welcome to Panhandler!

Panhandler is a lightweight utility used to aggregate and view or load configuration templates. The primary focus is
PAN-OS devices such as the NGFW or Panorama yet may be extended to other elements such as Terraform and 3rd party devices.

Using predefined templates helps fast-track the loading of well known or recommended configurations without extensive
searching and scrolling through GUI-click documentation. Each collection of configuration templates are known as skillets
that are either preloaded into panhandler at runtime or can be manually added as needed.

Skillets can be based on xml, json, text or any other config type used by each device. They are grouped by output action
including:



	panos: load into a NGFW and commit


	panorama: load into Panorama and commit


	template: simple text render to the screen


	terraform: deploy infra via Terraform templates


	rest: interact with REST based APIs


	docker: launch docker containers







To load a configuration into a device with panhandler, the user simply has to add the target information for the device
to be configured, select the skillet to load, enter the form data, and submit. Panhandler then captures the form data,
grabs each configuration element, and loads into the specified device.


Release History


V4.0


	Released 9-2020




New Features:


	
	Skillet Editor

	A new UI to edit all aspects of a Skillet.







	
	Skillet Creation Tools

	This feature allows you to build a skillet from scratch in a number of different ways. For example, you
can build a skillet from the differences between two saved configuration files.







	
	Improved Terraform Support

	Terraform now uses a docker image in the backend, which allows any arbitrary terraform version to be supported.
This allows the skillet builder to choose customized docker image containing any version of terraform and
supporting libraries.







	
	Support for SSH based git repositories

	This allows you to use private git repositories as well as push local changes back upstream.











V3.1


	Released 3-2020




New Features:


	
	Support for docker type skillets

	This brings support for Ansible, Shell scripts, custom binaries, configurable Terraform versions, and more. See
github [https://github.com/PaloAltoNetworks/Skillets] for examples.











V3.0


	Released 2-2020




New Features:


	
	New skillet type: pan_validation

	This allows PAN-OS configuration file analysis using a jinja language expressions. More example can be found on
github [https://github.com/PaloAltoNetworks/Skillets].







	
	Dynamic UI elements

	Allows variables to be shown or hidden based on the value of another variable.







	
	New variable types

	File uploads, Dynamic lists, new validations and many more [https://github.com/PaloAltoNetworks/Skillets/blob/master/inputs/all_inputs/.meta-cnc.yaml].











V2.2


	Released 6-2019




New Features:


	Improved Input validation


	
	Python script support with configurable input types.

	Script arguments can be passed via cli arguments or as env variables







	
	Automatic update detection.

	Panhandler will check if you are running the latest and greatest version on startup







	
	PAN-OS Skillet debug support

	This allows you to verify what is going to be pushed to a PAN-OS device before actually pushing







	
	Skillet debug on import

	Checks all skillets during repository import for syntax errors







	Collections page now supports filtering and sorting






Example Skillets

Many more examples can be found on Github [https://github.com/topics/skillets].






          

      

      

    

  

    
      
          
            
  
Running Panhandler

The recommended way to run Panhandler is to pull and run the docker container. For Windows users,
refer to the Windows Installation installation document.


Quick Start

The following command will ensure you have the most up to date version of panhandler and will set
up all the required ports and volume mounts. This command will also update existing Panhandler containers
with the latest released version.

curl -s -k -L http://bit.ly/2xui5gM | bash





If you don’t trust running bit.ly links through Bash, then you can run this variant instead:

curl -s -k -L https://raw.githubusercontent.com/PaloAltoNetworks/panhandler/master/ph | bash





This command will install and or update Panhandler to the latest version using the default values.

If you need special requirements, such as custom volume mounts, non-default username and password, or
non-standard ports, you set the following environment variables prior to launching the ‘curl’ command:


	CNC_USERNAME - Set the default username to login to the application (default paloalto)


	CNC_PASSWORD - Set the default password to login to the application (default panhandler)


	IMAGE_TAG - Set the tag you want to download and install. Possible values: (dev, latest) (default latest)


	DEFAULT_PORT - Set the port the application will listen on for web requests (default 8080)


	FORCE_DEFAULT_PORT- Ensure your desired port will be used regardless of any previously set ports. Possible values are ‘true’ or ‘false’





Note

You must set ‘FORCE_DEFAULT_PORT’ to ‘false’ if you change the ‘DEFAULT_PORT’ to some value other than what was
previously set!





Running the Panhandler Docker Container

If you need to manage the Panhandler container manually:


Using a standard web port

docker volume create panhandler_volume
docker run -p 8080:8080 -t -d \
    -v panhandler_volume:/home/cnc_user \
    -v "/var/run/docker.sock:/var/run/docker.sock" \
    -e CNC_USERNAME=paloalto \
    -e CNC_PASSWORD=panhandler \
    --name panhandler paloaltonetworks/panhandler





Then access the UI via http://localhost:8080

Changing the values of CNC_USERNAME and CNC_PASSWORD will set the default username and password respectively.



Using an alternate TCP port

If port 8080 is unavailable, you can switch to a different port. This example uses port 9999.

docker run -t -p 9999:8080 \
    -v panhandler_volume:/home/cnc_user \
    -v "/var/run/docker.sock:/var/run/docker.sock" \
    -e CNC_USERNAME=paloalto \
    -e CNC_PASSWORD=panhandler \
    --name panhandler paloaltonetworks/panhandler





Then access the UI via http://localhost:9999


Note

The -t option for terminal allows you to view panhandler output data in the terminal window.
This is useful for determining any skillets errors that write to terminal output.





Using Panhandler with TLS

Here is a project that adds TLS to Panhandler: https://github.com/fatofthelan/SecurePanHandler



Stopping the docker container

The docker container runs in the background. You can stop the container by using its container ID.

docker ps
docker stop { CONTAINER ID }





[image: _images/ph-docker-stop.png]

Note

If you need to remove the container, enter docker rm { CONTAINER ID } with CONTAINER ID as the
ID used to stop. You must stop the container before deleting.






Building Panhandler

If you want to build panhandler from source (which is not recommended). You will need to update the git submodules,
install the pip python requirements for both the app and also CNC, create the local db, and create a local user.

git clone https://github.com/PaloAltoNetworks/panhandler.git
cd panhandler
git submodule init
git submodule update
pip install -r requirements.txt
./cnc/manage.py migrate
./cnc/manage.py shell -c "from django.contrib.auth.models import User; User.objects.create_superuser('paloalto', 'admin@example.com', 'panhandler')"







Running Panhandler manually

To start the application on your local machine on port 80:

cd panhandler/cnc
celery -A pan_cnc worker --loglevel=info &
manage.py runserver 80





To use a different port, supply a different argument to the runserver command above. In this case, the server will
start up on port 80. Browse to http://localhost in a web browser to begin. The default login credentials are ‘paloalto’
and ‘panhandler’



Requirements

Panhandler has been tested to work on Docker version: 18.09.1 (Mac) and 18.09.0 (Linux). Windows Installation users
are encouraged to use WSL2.

Please ensure you have the latest docker version installed for the best results.



Windows Installation

Running panhandler on Windows is possible through docker. The most reliable setup method at this time is to run docker
commands directly through PowerShell backed by WSL 2. This process will require multiple reboots so plan accordingly.
Other installation methods may not provide appropriate access to the docker daemon from the running panhandler
container resulting in certain skillet types not functioning.


Install WSL 2

Begin by installing WSL 2. Microsoft has good documentation on how to do this here:

https://docs.microsoft.com/en-us/windows/wsl/install-win10

If unsure about a Linux distribution to use, choose the latest Ubuntu. Verify you can access WSL 2 before continuing.



Install Docker Desktop

After WSL 2 functionality is verified, install the latest Docker Desktop for Windows using the following tutorial from
docker.

https://docs.docker.com/docker-for-windows/install/


	During the install, ensure the following settings:

	
	Use the WSL2 based engine, using “Hyper-V” may lead to some known problems


	Start Docker Desktop when you login, it will allow panhandler to auto start on boot


	DO NOT select “Expose daemon on tcp://localhost:2375 without TLS”


	DO NOT select “Enable experimental features”


	DO NOT enable “Kubernetes”








Unless the installer states otherwise, these settings can be updated by right clicking the docker icon in your system
tray in the bottom right of your Windows screen and selecting “Settings”.

Although WSL 2 is required for operation, you will not be using WSL 2 to talk to docker. Open PowerShell and type
“docker ps” to verify your docker cli is working and able to talk to the docker daemon. You should see output similar
to this with no errors. This has to be working before you can proceed.

[image: _images/ph-windows-1.png]
Another good test to perform to ensure docker is running fine is to run the docker “Hello world” image. From PowerShell
type this command:

docker run --rm -it hello-world





You should get an output similar to this:

[image: _images/ph-windows-2.png]


Install Panhandler

At this point, you are ready to install and start panhandler. In PowerShell, issue this command to pull down the latest
panhandler image.

docker pull paloaltonetworks/panhandler:latest





This will take a minute, but you should get output similar to this:

[image: _images/ph-windows-3.png]
With the image downloaded, all that’s left to do is create the volumes and start panhandler. Docker volumes are virtual
storage entities that provides a way to upgrade the image without losing app data. Create the volumes by running these commands:

docker volume create CNC_VOLUME
docker volume create PANHANDLER_VOLUME





You can verify the volumes have been created by running this command and checking the output matches to the image below:

docker volume list





[image: _images/ph-windows-4.png]
Now you can start panhandler by coping this entire command block into PowerShell. This command sets a restart policy
of always, which ensures panhandler will restart with your computer and always run unless you stop it.

docker run `
    --name panhandler `
    -v //var/run/docker.sock:/var/run/docker.sock `
    -v PANHANDLER_VOLUME:/home/cnc_user `
    -v CNC_VOLUME:/home/cnc_user/.pan_cnc `
    -d -p 8080:8080 `
    --restart=always `
    paloaltonetworks/panhandler:latest





That command will result in a long hash that will serve as the ID for the container, but you can still reference it
with the name “panhandler”.

[image: _images/ph-windows-5.png]
After a few seconds, you should be able to access panhandler in your web browser by browsing to:

http://localhost:8080/

The installation process is now complete.



Stopping and Starting Panhandler

If you wish to stop panhandler from running until you restart it, you can do so with the PowerShell command:

docker stop panhandler





Likewise, this process can be restarted with the command:

docker start panhandler







Upgrading Panhandler

Only one more command is required to upgrade panhandler. The process is to delete the old container, update the image,
and start a new container.

You can delete the old container, running or stopped, with this command:

docker container rm panhandler -f





[image: _images/ph-windows-6.png]
You then can use the ‘docker pull’ and ‘docker run’ commands exactly as they are above to download a newer panhandler
image and start it. The volumes you created earlier will be still be available and assigned to the new container if
you use the commands as they are.



Troubleshooting Windows Install

If you run into either of the following errors when trying to install a Linux distribution:


Installing, this may take a few minutes…
WslRegisterDistribution failed with error: 0x80370102
Error: 0x80370102 The virtual machine could not be started
because a required feature is not installed.




or when trying to run the Docker Desktop GUI:


Hardware assisted virtualization and data execution protection
must be enabled in BIOS.




After verifying that virtualization is enabled in BIOS by opening Task Manager > Performance > Virtualization,
please attempt the following steps.


	If the Windows’ Hyper-V feature is totally disabled or not installed, enable Hyper-V by
opening the PowerShell as administrator and running the following command:




dism.exe /Online /Enable-Feature:Microsoft-Hyper-V /All






	If the Windows’ Hyper-Vfeature is enabled and not working, enable Hypervisor with the
following command and restart your system:




bcdedit /set hypervisorlaunchtype auto






	If the problem persists probably Hyper-V on your system is corrupted, so turn off all Hyper-V
related Windows’ features under Control Panel > Programs > Windows Features. Restart
your system and attempt to enable Hyper-V again.




This troubleshooting guide was found from:


https://stackoverflow.com/questions/39684974/docker-for-windows-error-hardware-assisted-virtualization-and-data-execution-p







Switching between Latest and Develop Containers

PanHandler runs in a Docker container, the main build tagged as ‘latest’.

There is also a develop branch with new features and updates. Although not the recommended release, some users may
want to work with develop and explore new features. Some skillets being developed may also be dependent on newer features.


Updating the Running Latest Version

This script will install or update to the latest ‘dev’ image for Panhandler. This is recommended for developers
or power-users who understand this code may be unstable and not all features may work all the time.

curl -s -k -L http://bit.ly/34kXVEn  | bash





The following bash script can be copy-pasted into the terminal to stop the PanHandler process, pull the latest,
and run again. The example uses port 9999 for web access.

export PANHANDLER_IMAGE=paloaltonetworks/panhandler
export PANHANDLER_ID=$(docker ps | grep $PANHANDLER_IMAGE | awk '{ print $1 }')
docker stop $PANHANDLER_ID
docker rm -f $PANHANDLER_ID
docker pull $PANHANDLER_IMAGE
docker run -t -p 9999:80 -t -v $HOME/.pan_cnc:/home/cnc_user/.pan_cnc $PANHANDLER_IMAGE







Updating the Running Develop Version

The following bash script can be copy-pasted into the terminal to stop the PanHandler process, pull the develop version,
and run again. The example uses port 9999 for web access.

export PANHANDLER_IMAGE=paloaltonetworks/panhandler:dev
export PANHANDLER_ID=$(docker ps | grep $PANHANDLER_IMAGE | awk '{ print $1 }')
docker stop $PANHANDLER_ID
docker rm -f $PANHANDLER_ID
docker pull $PANHANDLER_IMAGE
docker run -t -p 9999:80 -t -v $HOME/.pan_cnc:/home/cnc_user/.pan_cnc $PANHANDLER_IMAGE_D







Switching from Latest to Develop

These commands still stop the latest main release version then pull down and run the latest develop version.
The latest release container will be deleted.

export PANHANDLER_IMAGE_M=paloaltonetworks/panhandler
export PANHANDLER_IMAGE_D=paloaltonetworks/panhandler:dev
export PANHANDLER_ID=$(docker ps | grep $PANHANDLER_IMAGE_M | awk '{ print $1 }')
docker stop $PANHANDLER_ID
docker rm -f $PANHANDLER_ID
docker pull $PANHANDLER_IMAGE_D
docker run -t -p 9999:80 -t -v $HOME/.pan_cnc:/home/cnc_user/.pan_cnc $PANHANDLER_IMAGE_D







Switching from Develop to Latest

These commands still stop the develop  version then pull down and run the latest main release version.
The develop version container will be deleted.

export PANHANDLER_IMAGE_M=paloaltonetworks/panhandler
export PANHANDLER_IMAGE_D=paloaltonetworks/panhandler:dev
export PANHANDLER_ID=$(docker ps | grep $PANHANDLER_IMAGE_D | awk '{ print $1 }')
docker stop $PANHANDLER_ID
docker rm -f $PANHANDLER_ID
docker pull $PANHANDLER_IMAGE_M
docker run -t -p 9999:80 -t -v $HOME/.pan_cnc:/home/cnc_user/.pan_cnc $PANHANDLER_IMAGE_M





When switching between dev and latest clear the cache with the following link:

http://localhost:9999/clear_cache




Keeping Up to Date

As panhandler is a quickly evolving project with new features added frequently, it is advisable to ensure you update
to the latest periodically.


Update Script

The following script is useful to update your version of Panhandler to the latest while retaining all your settings,
port mappings, etc.

curl -s -k -L http://bit.ly/2xui5gM | bash





This script will pull down a bash script that will determine if your version of Panhandler is the latest. If not,
it will pull the latest image from Docker Hub [https://cloud.docker.com/u/paloaltonetworks/repository/docker/paloaltonetworks/panhandler/general], remove the old container and create a new container with the same
port mapping as the previous version.


Note

If you are upgrading from a very old Panhandler version, you may need to import Skillet repositories again.





Manually updating the Panhandler Container

Panhandler is primarily distributed as a docker image on Docker Hub [https://cloud.docker.com/u/paloaltonetworks/repository/docker/paloaltonetworks/panhandler/general]. To ensure you have the latest version, check
for new releases here [https://cloud.docker.com/u/paloaltonetworks/repository/docker/paloaltonetworks/panhandler/general]. To manually launch a newer version via docker:

docker pull paloaltonetworks/panhandler:latest
docker run -p 8080:8080 -t -v $HOME:/home/cnc_user paloaltonetworks/panhandler





This will create a container based on the latest image tag. Versioned panhandler images are also available and can be
found on Docker Hub.


Note

You must periodically pull new images from Docker hub to ensure you have the latest software with new features and
bug fixes.



To ensure you have the most up to date software, perform a docker pull and specify your desired release tag.

export TAG=latest
docker pull paloaltonetworks/panhandler:$TAG
docker run -p 8080:8080 -t -v $HOME:/home/cnc_user paloaltonetworks/panhandler:$TAG







Ensuring your Panhandler container is using the latest image

If you already have Panhandler running, you may need to use the following commands to first stop the existing
container. Note the image tag in the PANHANDLER_IMAGE variable below. You may want to change this to ‘latest’
or some other specific release tag like ‘2.2’

export PANHANDLER_IMAGE=paloaltonetworks/panhandler:dev
export PANHANDLER_ID=$(docker ps | grep $PANHANDLER_IMAGE | awk '{ print $1 }')
docker stop $PANHANDLER_ID
docker rm -f $PANHANDLER_ID
docker pull $PANHANDLER_IMAGE
docker run -p 8080:8080 -t -v $HOME:/home/cnc_user -d $PANHANDLER_IMAGE







Cleaning up old versions

Once you update to a newer version of Panhandler, the older images can still be left around, taking up space on your
hard drive. A common best practice is to occasionally remove old images with the following docker command:

docker image prune






Note

This command may take some time to complete, up to several minutes. The longer it takes, the more space
it’s saving on your hard drive!



On my system, this command can regularly reclaim over 10GB of space.

Another good command to occasionally run is:

docker container prune





This will remove all stopped containers and recover their used disk space as well.






          

      

      

    

  

    
      
          
            
  
Using Panhandler

Once installed and running, use your web browser to access panhandler.


Access the web portal

For your local device:


http://localhost:80  (for a standard web port)

http://localhost:9999 (using a defined port, eg. 9999)




The default username and password is: paloalto and panhandler



Set the Configuration Target

Before choosing skillets to load, set the configuration target IP and username/password credentials. This stores the
device credentials to be used for API access.

Jump to Panhandler Environments to set the environment.



Choose Skillets to View by Collection

From the main panhandler menu, select Skillet Collections to see available Skillet Collections. A collection
is a group of Skillets.

[image: _images/ph-menu.png]
Select Go on the card for the desired collection to see all Skillets that belong to that collection. Any
Skillet builder can create their own collection.



Select the Skillet to Load

A list of templates will be available to load into your device. Select the desired item and enter the form data.

[image: _images/ph-example-skillet.png]
The final form will be the target information for API config loading. Confirm the correct values and submit.

[image: _images/ph-configure-target.png]
For PAN-OS types, you can choose to check or uncheck the ‘Perform Commit’ option to push the configuration then
do a ‘commit’ or only push the configuration without a commit.

You can also check or uncheck the ‘Perform Backup’ option to create a named configuration backup on the device prior
to pushing the new configuration. This provides a roll back mechanism should you desire. The named backups will be
named with the following format: panhandler-20190101000000.xml (panhandler followed by the current timestamp)


Warning

Validate the device type and software version matches the skillet. For example, you will get errors if trying
to load a Panorama template into a firewall. There are also cases where you cannot mix sofware versions and
loading a v8.1 configuration into a v8.0 device will result in errors.




Warning

Some templates may have dependencies requiring elements to be previously loaded into the system or from other templates.
Examples may be certificates, security objects, log forwarding profiles, etc. Check template documentation and look
for any specific dependencies.



Once the load has completed, you can select another template to load to the same device or choose another Environment to
load a configuration to another device.


Note

Commit operations are queued in the background on the device. If you chose to commit the configuration on the
edit target screen, then a Job ID will be displayed in the success message. You can then use this Job ID to view
the status of this commit operation either via a Skillet or on the PAN-OS device directly.





Understanding what will be pushed

You have two options to examine what configurations will be pushed by a skillet. The first, is to simply
uncheck the ‘Perform Commit’ checkbox. Then you can log into the device and issue a show config diff command
from the CLI.

You can also select the ‘Debug’ button from the Edit Target screen. This will display a list of all fully
rendered XML snippets and the xpaths where they will be inserted into the configuration heirarchy.

[image: _images/ph-debugging.png]


Adding a New Skillet Repository

Panhandler is preloaded with a wide set of skillets yet you may still have to manually add skillet repos.


Import a New Skillet

From the main menu, choose Import Skillets.

[image: _images/ph-menu.png]
The import repository fields allow you to specify the repo name and URL to import. You may
import repositories from any git server, including GitHub, gitlab, gogs, etc.

To import a repository from Github, click on the ‘Clone or Download’ button and copy the full HTTPS link
shown.

[image: _images/ph-github-clone-url.png]

Warning

Private Repositories must use the SSH based URL. You must also import your Panhandler
SSH Key into your private repository.



Also, note which branch you want to import. The list of available branches can be found in Github by clicking
the ‘Branch: master’ button on the main page of the repository.

[image: _images/ph-github-branches.png]
Enter this information in the ‘Import Skillets’ form to import the repository and gain access to the
Skillets contained within.

[image: _images/ph-import-repo.png]
Once successful, you will see the complete list of imported repositories including the newly added repo.

At this stage, going to the Template Library will show any additional skillets in their respective categories.



Update a Skillet Repository

From the main menu, choose Repositories.

[image: _images/ph-menu.png]
Click on Details for the repository of interest.

[image: _images/ph-repo-details-full.png]
The repo window will show a description of the repo along with the last few content changes.

Choose Update to Latest to check for and pull template updates.


Note

Already up to date will show that no changes were made to the source skillet and no udpates required.





Using a Private Git Repository

In order to use private repositories, you must first import the Panhandler public SSH key
into your upstream repository or account.

[image: _images/ph-user-menu.png]
Use the ‘View SSH Public Key’ option in the user menu to see the autogenerated key for Panhandler.

Instructions for importing this key into your repository can be found here:


	GitHub [https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account]


	GitLab [https://docs.gitlab.com/ee/ssh/#adding-an-ssh-key-to-your-gitlab-account]


	BitBucket [https://confluence.atlassian.com/bitbucket/access-keys-294486051.html]


	Others [https://duckduckgo.com/?q=add+SSH+key+to+git+repository&t=ffab&ia=web]





Warning

You must use the SSH based git URL when importing your private repository as HTTPS authentication
is not supported!






Panhandler Environments

Often times, it is desirable to store environment specific data outside of a git repository. Panhandler provides
a mechanism to do this using ‘Environments’.


What is an Environment

An environment is a collection of secrets that can be loaded and managed as a unit. For example, you may want to keep
all AWS related secrets together in an environment called ‘AWS’. When panhandler displays a web form from a configuration
set, any variables from the configuration template that share a name with a secret in the currently loaded environment,
that value will be pre-populated.

This is especially useful if you have multiple environments such as ‘AWS-QA’, ‘AWS-PROD’, and ‘AWS-DEV’.



Unlocking Environments

To load an environment, click on the ‘lock’ icon on the right of the navigation bar.

[image: _images/ph-env-locked.png]
You will be presented with an unlock password dialog. This password will be used to protect any secrets you store
in your environments in an encrypted file in your home directory. If this encrypted file does not already exist it will
be created and protected with the password you enter here.

[image: _images/ph-unlock-env.png]
Once unlocked, you can manage your environments by creating new ones, cloning, configuring, or deleting existing ones.

[image: _images/ph-environments.png]
Choosing the ‘Configure’ option on an environment allows you to add, remove, or overwrite secrets stored within them.

[image: _images/ph-env-details.png]
Choosing to ‘Load’ an environment makes that env available to pre-populate template fields. It will also be available
as a ‘pop-over’ that you can use to copy and paste secrets into template fields. This is useful when you want to
store secrets like API_KEYS


Note

Template variables that share the same ‘name’ as a secret in the currently loaded environment will be
pre-populated with the value of that secret. You can find the exact name of a specific variable field
by looking at the ‘.meta-cnc.yaml’ file for that form.



[image: _images/ph-env-menu.png]





          

      

      

    

  

    
      
          
            
  
Skillets

The heart of Panhandler is the .skillet.yaml file. This allows a set of configuration snippets, known as a skillet,
to be shared and consumed as a single unit. For example, to configure a default security profile you may need to
configure multiple different parts of the PAN-OS configuration. Panhandler allows you to group those different ‘pieces’
and share them among different devices as a single unit. Often times these configuration bits
(affectionately called ‘skillets’) need slight customization before deployment to a new device. The .skillet.yaml
file provides a means to templatize these configurations and present a list of customization points, or variables,
to the end user or consumer.


IronSkillet

The very first, and most well known, Skillet is IronSkillet [https://github.com/PaloAltoNetworks/iron-skillet]. This
was developed as a way to share best practice Day One configurations in an easy to deploy manner without requiring
‘a million clicks’.

Much more information about IronSkilet can be found on
Readthedocs [https://iron-skillet.readthedocs.io/en/docs_master/].



Basic concepts

In order to add multiple ‘bits’ of configuration to a device, we need to know the following things:


	XML Configuration fragment with optional variables defined in jinja2 format


	XPath where this xml fragment should be inserted into the candidate configuration


	the order in which these XML fragments must be inserted


	a list of all variables that require user input


	target version requirements. For example: PAN-OS 8.0 or higher




This is all accomplished by adding multiple files each containing an XML configuration fragment and a .skillet.yaml
file that describes the load order, variables, target requirements, etc.



YAML syntax

Each skillet is structured as a series of files in a single directory. This directory may contain
a number of template files (XML, YAML, JSON, etc) and a .skillet.yaml file. Note the following:


	A .skillet.yaml file that is formatted with using YAML with the following format:




name: config_set_id
label: human readable text string
description: human readable long form text describing this Skillet

labels:
  collection:
    - Example Skillets

variables:
  - name: INF_NAME
    description: Interface Name
    default: Ethernet1/1
    type_hint: text

snippets:
  - xpath: some/xpath/value/here
    name: config_set_knickname
    file: filename of xml snippet to load that should exist in this directory






Note

You may also use an ‘element’ attribute instead of the ‘file’ attribute if you would rather include
the XML fragment inline as opposed to in a separate file.




	Multiple configuration files. Each should contain a valid template fragment and may use jinja2 variables.
These templates may be XML, JSON, YAML, Text, etc. For PAN-OS devices, these are XML fragments from specific stanzas
of the PAN-OS device configuration tree.






Metadata details

Each .skillet.yaml file must contain the following top-level attributes:


	name: unique name of this Skillet


	label: Human readable label that will be displayed in the Panhandler UI


	description: Short description to give specific information about what this Skillet does


	type: The type of skillet. This can be ‘panos’, ‘panorama’, ‘rest’, or others.


	variables: Described in detail below


	snippets: a list od dicts. The required attributes vary according to Skillet tupe




Optional top level attributes:


	depends: List of dicts containing repository urls and branches that this skillet depends on


	
	labels: Extensible list of key/value pairs that offers additional, optional, functionality. See here for a

	complete list Labels.










Note

Each Metadata file type has it’s own format for the ‘snippets’ section. file and xpath are only used in
panos and panorama types. Other types such as template or rest may have a different format.




Skillet Collections

Each Skillet should belong to at least one ‘Collection’. Collections are used to group like skillets. SKillets
with no collection label will be placed in the ‘Unknown’ Collection.

To configure one or more collections for your Skillet, add a collection attribute to the ‘labels’ dictionary.

labels:
  collection:
    - Example Skillets
    - Another Collection
    - Yet another Collection





See Labels for a complete list of all labels supported by Panhandler.



Snippet details per Metadata type

Required fields for each metadata type is listed below:


	
	panos, panorama, panorama-gpcs

	
	name - name of this snippet


	cmd - operation to perform. Default is ‘set’. Any valid PAN-OS API Command is accepted (set, edit, override, get, show, etc)


	xpath - XPath where this fragment belongs


	file - path to the XML fragment to load and parse


	element - inline XML fragment to load and parse. Can be used in leu of a separate ‘file’ field




See Example here: Example PAN-OS Skillet







	
	pan_validation

	
	name - name of the validation test to perform


	cmd - validate, validate_xml, noop, or parse. Default is validate


	test - Boolean test to perform using jinja expressions




See Example here: Example Validation Skillet







	
	template

	
	name - name of this snippet


	file - path to the jinja2 template to load and parse


	template_title - Optional title to include in rendered output










	
	terraform

	
	None - snippets are not used for terraform




See Example here: Example Terraform Skillet







	
	rest

	
	name - unique name for this rest operation


	path - REST URL path component path: http://host/api/?type=keygen&user={{ username }}&password={{ password }}


	operation - type of REST operation (GET, POST, DELETE, etc)


	
	payload - path to a jinja2 template to load and parse to be send as POSTed payload

	
Note

For x-www-form-urlencded this must be a json dictionary









	
	headers - a dict of key value pairs to add to the http headers

	
Note

for example: Content-Type: application/json











See Example here: Example REST Skillet and here: Example REST Skillet with Output Capturing







	
	python3

	
	name - name of the script to execute


	file - relative path to the python script to execute


	input_type - Optional type of input required for this script. Valid options are ‘cli’ or ‘env’.
This will determine how user input variables will be passed into
into the script. The default is ‘cli’ and will pass variables as long form arguments to the script in the form
of –username=user_input where username is the name of the variable defined in the variables section and
user_input is the value entered for that variable from the user. The other option, ‘env’ use cause all
defined variables to be set in the environment of the python process.




See Example here: Example Python Skillet












Defining Variables for User input

Each skillet can define multiple variables that will be interpolated using the Jinja2 templating language. Each
variable defined in the variables list should define the following:


	name: The name of the variable found in the skillets. For example:




{{ name }}






	description: A brief description of the variable and it’s purpose in the configuration. This will be rendered as
the field label in the UI.


	default: A valid default value which will be used if no value is provided by the user.


	type_hint: Used to constrain the types of values accepted. May be implemented by additional third party tools.
Examples are text, text_field, ip_address, password, dropdown, and checkbox.


	force_default: The UI will be pre-populated with a value from the loaded environment or with a previously
entered value unless this value is set to True. The default is False. Setting to True will ensure the default
value will always be rendered in the panhandler UI.


	required: Determines if a value is required for this field. The default is False.


	help_text: Optional attribute that will be displayed immediately under the field. This is useful for giving
extra information to the user about the purpose of a field.





Note

The variable name must not contain special characters such as ‘-’ or ‘*’ or spaces. Variable names can be any
length and can consist of uppercase and lowercase letters ( A-Z , a-z ), digits ( 0-9 ), and the underscore
character ( _ ). An additional restriction is that, although a variable name can contain digits, the first
character of a variable name cannot be a digit.




Variable Example:

Here is an example variable declaration.

- name: FW_NAME
  description: Firewall hostname
  default: panos-01
  type_hint: text
  help_text: Hostname for this firewall.
  allow_special_characters: false
  attributes:
    min: 6
    max: 256





See Variables for a complete reference of all available type_hints.




Hints


Ensuring all variables are defined

When working with a large amount of configuration temlates, it’s easy to miss a variable definition. Use this one-liner
to find them all.

cd into a skillet dir and run this to find all configured variables:

grep -r '{{' . |  cut -d'{' -f3 | awk '{ print $1 }' | sort -u





Of, if you have perl available, the following may also catch any configuration commands that may have
more than one variable defined:

grep -r '{{' . | perl -pne 'chomp(); s/.*?{{ (.*?) }}/$1\n/g;' | sort -u







YAML Syntax

YAML is notoriously finicky about whitespace and formatting. While it’s a relatively simple structure and easy to learn,
it can often also be frustrating to work with, especially for large files. A good reference to use to check your
YAML syntax is the YAML Lint site [http://www.yamllint.com/].



Jinja Whitespace control

Care must usually be taken to ensure no extra whitespace creeps into your templates due to Jinja looping
constructs or control characters. For example, consider the following fragment:

<dns-servers>
{% for member in CLIENT_DNS_SUFFIX %}
    <member>{{ member }}</member>
{% endfor %}
</dns-servers>





This fragment will result in blank lines being inserted where the ‘for’ and ‘endfor’ control tags are placed. To
ensure this does not happen and to prevent any unintentioal whitespace, you can use jinja whitespace control like
so:

<dns-servers>
{%- for member in CLIENT_DNS_SUFFIX %}
    <member>{{ member }}</member>
{%- endfor %}
</dns-servers>






Note

Note the ‘-’ after the leading ‘{%’. This instructs jinja to remove these blank lines in the resulting
parsed output template.






Creating and Editing Skillets

In Panhandler 4.0, you now have the ability to generate Skillets dynamically. This feature
works by generating the difference between two saved configurations. These configurations
can the candidate, running, baseline, or any saved configuration. The currently
supported options for skillet generation are:


	Skillet from a running PAN-OS or Panorama instance using saved configurations or the running configuration


	Skillet from two exported configurations


	Set commands from a running PAN-OS or Panorama instance using saved configurations or the running configuration


	Set commands from two exported configurations


	Full Configuration template from a saved configuration




[image: _images/ph-create-skillet.png]

Skillet Editor

The Skillet Editor allows you to copy, edit, create, and delete Skillets in a local branch
of a repository. The Editor allows GUI based editing of all aspects of a Skillet including
editing and ordering snippets, dynamically detecting variables, creating and ordering variables,
and updating the metadata.

[image: _images/ph-skillet-editor.png]
The Skillet Editor currently supports the following skillet types:


	panos


	panorama


	pan-validation


	rest


	template




[image: _images/ph-skillet-editor-edit-snippet.png]


Other Tools

If you prefer a CLI experience, check out SLI [https://pypi.org/project/sli/]

For more information, see the Skillet Builder [https://skilletbuilder.readthedocs.io/en/latest/] documentation.




PAN-OS Validation Skillets

PAN-OS Validation skillets are used to check the compliance of a PAN-OS device configuration. They are comprised
of a series of ‘tests’ that each check a specific portion of the configuration. Validation tests can be executed
in both ‘online’ as well as ‘offline’ mode.

Online mode will query the running configuration of a running NGFW via it’s API.

Offline node will execute the tests against an uploaded configuration file. This is especially useful to checking
things like configuration backups, or devices where direct API access is not possible.



Validation Tests

Each test is evaluated using jinja [https://jinja.palletsprojects.com/en/2.10.x/templates/] boolean expressions. This means each test can only result in a pass or fail. In
order to perform simple logical operations on the XML configuration, it must first be converted into variables that
can be passed to the jinja templating engine. Once the variables have been captured, we can test each one of them
with some logical operation.


Variable Capturing

Panhandler will automatically inject the ‘config’ variable into the validation skillet
context to simplify capturing additional variables from it. The ‘config’ variable is the ‘running’
configuration from the target device, or an uploaded configuration from the user. In either case, the ‘config’ variable
will always be present for validation skillets.

The following example shows variable capturing:

- name: parse config variable and capture outputs
    cmd: parse
    variable: config
    outputs:
      # create a variable named 'zone_names' which will be a list of the attribute 'names' from each zone
      # note the use of '//' in the capture_pattern to select all zones
      # the '@name' will return only the value of the attribute 'name' from each 'entry'
      - name: zone_names
        capture_pattern: /config/devices/entry/vsys/entry/zone//entry/@name
      # note here we can combine an advanced xpath query with 'capture_object'. This will capture
      # the full interface definition from the interface that contains the 'ip_to_find' value
      - name: interface_with_ip
        capture_object: /config/devices/entry/network/interface/ethernet//entry/layer3/ip/entry[@name="{{ ip_to_find }}"]/../..





This example captures two variables from the config: ‘zone_names’ and ‘interface_with_ip’. The ‘parse’ cmd type informs
Panhandler that this step is going to pass the variable named in the ‘variable’ attribute to the output. The ‘outputs’
attribute will then determine what specific parts of this variable we want to capture. The value of the ‘outputs’
attribute is a list of dicts. Each dict represents one new variable that will be captured. The two options for
what you want to capture are ‘capture_pattern’ and ‘capture_object’. Both types will query the ‘config’ variable
using an XPATH expression. The main difference is in how the results of that query are processed and returned.



Capture Pattern

The ‘capture_pattern’ attribute will try to intelligently interpret the results of the XPATH query. This is most useful
as in the above when you would like to return a list of element attributes, or a list of element text values.

In the above example, the variable ‘zone_names’ will be a list with the following:

zone_name = [
  "trust",
  "untrust",
  "dmz"
]







Capture Object

The ‘capture_object’ attribute will convert the returned XML into an dictionary object using the python ‘xmltodict’
library. This is especially useful when you want to perform a large number of tests on the same basic part of the
config. This allows you to ‘capture’ one part of the config, then perform logic against lots of different parts of it.

In the example above, the variable ‘interface_with_ip’ will have the value:

interface_with_ip = {
  "layer3": {
    "ip": {
      "entry": {
        "@name": "10.10.10.10/24"
      }
    }
  }
}







Validation Testing

Once you have captured the various variables you want to test, use the ‘validate’ cmd type.

For example:

- name: zones_are_configured
  cmd: validate
  label: Ensure at least one zone is Configured
  test: zone_names is not none
  documentation_link: https://iron-skillet.readthedocs.io/en/docs_dev/viz_guide_panos.html#device-setup-management-general-settings





The ‘test’ attribute uses the jinja [https://jinja.palletsprojects.com/en/2.10.x/templates/] expression language to perform a boolean test on the supplied expression. In
this example, if zone_names is defined and has a value, then the test will pass.



A more complex example

This example is slightly more complex and uses a number of features to accomplish this compliance check:

- name: device_config_file
  cmd: parse
  variable: config
  outputs:
    # capture all the xml elements under statistics-service for later evaluation
    - name: telemetry
      capture_object: /config/devices/entry[@name='localhost.localdomain']/deviceconfig/system/update-schedule/statistics-service

- name: telemetry_fully_enabled
  label: enable all telemetry attributes
  test: |
    (
    telemetry | element_value('statistics-service.application-reports') == 'yes'
    and telemetry | element_value('statistics-service.threat-prevention-reports') == 'yes'
    and telemetry | element_value('statistics-service.threat-prevention-pcap') == 'yes'
    and telemetry | element_value('statistics-service.passive-dns-monitoring') == 'yes'
    and telemetry | element_value('statistics-service.url-reports') == 'yes'
    and telemetry | element_value('statistics-service.health-performance-reports') == 'yes'
    and telemetry | element_value('statistics-service.passive-dns-monitoring') == 'yes'
    and telemetry | element_value('statistics-service.file-identification-reports') == 'yes'
    )
  fail_message: telemetry should be enabled for all attributes
  documentation_link: https://iron-skillet.readthedocs.io/en/docs_dev/viz_guide_panos.html#device-setup-telemetry-telemetry





Here, we first capture the XML elements found under ‘statistics-service’ if any are found. This is then converted
into a variable object with the name ‘telemetry’. The ‘telemetry’ object when fully configured will have the following
structure:

telemetry = {
  "statistics-service": {
    "application-reports": "yes",
    "threat-prevention-reports": "yes",
    "threat-prevention-pcap": "yes",
    "threat-prevention-information": "yes",
    "passive-dns-monitoring": "yes",
    "url-reports": "yes",
    "health-performance-reports": "yes",
    "file-identification-reports": "yes"
  }
}





To facilitate a simple syntax to check this, custom jinja [https://jinja.palletsprojects.com/en/2.10.x/templates/] filters have been developed including ‘element_value’. We
use ‘element_value’ here to return the value found at a specific ‘path’ inside the object. The ‘path’ is a ‘.’ or ‘/’
separated list of attributes to check.

# this will evaluate to true in this case because the path 'statistics-service.application-reports' exists
# and the value found therein is equal to the desired value of 'yes'
telemetry | element_value('statistics-service.application-reports') == 'yes'





For more information about all available custom filters and their example uses, see the list of filters [https://github.com/PaloAltoNetworks/skilletlib/blob/master/docs/jinja_filters.rst] documentation
here [https://github.com/PaloAltoNetworks/skilletlib/blob/master/docs/jinja_filters.rst].




PAN-OS Validation Examples

To get a sense of all that is possible, here are a couple of complete examples.

CIS Benchmarks [https://gitlab.com/panw-gse/as/cis-benchmarks] will validate a PAN-OS
device for CIS [https://www.cisecurity.org/] compliance.

STIG Benchmarks [https://gitlab.com/panw-gse/as/stig_skillets] will validate a PAN-OS device
for STIG [https://public.cyber.mil/stigs/] compliance.



Hints, Tips, Tricks


Start with a Pass

Because you often need to know the structure of the configuration and the resulting objects, it is always a good idea
to start with a fully configured PAN-OS NGFW that will ‘pass’ the validation test you are writing.



Use Tools to explore the config

You can also use the `Skillet Builder`_ tools found on github here: https://github.com/PaloAltoNetworks/skilletbuilder.
These are a set of Skillets designed to aid in building Skillets and especially Validation Skillets. Start with an
example validation [https://github.com/PaloAltoNetworks/skilletlib/tree/master/example_skillets] skillet from here: https://github.com/PaloAltoNetworks/skilletlib/tree/master/example_skillets
and copy the contents in the ‘Skillet Test Tool’. This will allow you to quickly test various capture patterns
and run different types of test quickly. It will also show you the structure of the XML snippets and objects returned
from your XPATH queries.




Creating and Debugging Validation Skillets

Panhandler allows you to edit and debug validation skillets using the Skillet Editor. See Creating and Editing Skillets.

From the repository details page, click the ‘edit’ control for the Skillet you want to edit.

[image: _images/ph-edit-skillet.png]
At the bottom of the Skillet Editor, click the ‘Debug’ button to enter the Skillet Debugger.

[image: _images/ph-debug-skillet-button.png]


Skillet Debugger

The Skillet Debugger allows you to step through each snippet and see the context between steps. This is
especially useful to understand the various captures and filters available.

[image: _images/ph-skillet-debugger.png]
To use the debugger, manually enter Device connection information into the Context input. You may also edit
any defined variables here that may impact the skillet logic.


Note

Ensure the context input is valid JSON.



Click the ‘play’ button to execute the next snippet. The ‘Outputs’ will show the returned value from the snippet.
The ‘Context’ will also contain all captured values as well. This allows you to quickly experiment with various
capture_pattern, capture_list, capture_value, and filter_items options.

You may also use the ‘Skip Ahead to Snippet’ in order to test a specific snippet execution.


Note

Be sure you understand what variables a snippet requires in the context when skipping ahead. In some cases,
you’ll need play the snippets in order to get the proper context values in place.




Manual Debugging with SLI

SLI [https://pypi.org/project/sli/] is a command line interface to
skilletlib [https://github.com/paloaltonetworks/skilletlib] and offers
a great way to test and discover all the various features of skillets.

SLI makes it easy to quickly verify XPath queries, capture queries, and so on.

# Test and output a capture_list that displays names of all decryption policies
sli capture list  "/config/devices/entry[@name='localhost.localdomain']/vsys/entry/rulebase/decryption/rules/entry/@name"

# Same as above, except this command will store the output to the default context in the variable "decryption_rules"
sli capture -uc list "/config/devices/entry[@name='localhost.localdomain']/vsys/entry/rulebase/decryption/rules/entry/@name" decryption_rules

# Capturing an object works similar to capturing a list
sli capture object "/config/devices/entry[@name='localhost.localdomain']/vsys/entry/rulebase/decryption"

# Capturing an expression allows further processing on data already stored in the context
sli capture -uc expression "decryption_rules | json_query('[].entry[].category.member[]')"

# Windows requires an additional escape character on double quotes, a ` is required in addition to the \
sli capture -uc expression "decryption_obj | json_query('decryption.rules.entry[].\`"@name\`"')"





SLI is available on Pypi.org [https://pypi.org/project/sli/] and can be easily installed like this:

pip install sli







Manual Debugging with Python

In some cases, it may be desirable to use Python or a debugger like PyCharm or pdb for building your validation
skillet. Here is an example python script that will load a config file from the local filesystem and run a
skillet. You may use the ‘filter_snippets’ option to only run specified snippets as desired.

import json

import click

from skilletlib.skilletLoader import SkilletLoader


@click.command()
@click.option("-c", "--config_file", help="Local Config File", type=str, default="config.xml")
@click.option("-d", "--skillet_dir", help="Skillet Directory", type=str, default=".")
@click.option("-f", "--snippet_filter", help="Snippet Filter Type", type=str, default="")
@click.option("-s", "--snippet_filter_value", help="Snippet Filter Value", type=str, default="")
def cli(config_file, skillet_dir, snippet_filter, snippet_filter_value):
    sl = SkilletLoader()
    skillets = sl.load_all_skillets_from_dir(skillet_dir)
    d = skillets[0]

    context = dict()
    with open(config_file, 'r') as config:
        context['config'] = config.read()

    if snippet_filter != "":
        context['__filter_snippets'] = {
            snippet_filter: snippet_filter_value
        }

    out = d.execute(context)

    print('=' * 80)
    print(json.dumps(out, indent=4))
    print('=' * 80)


if __name__ == '__main__':
    cli()





The above requires ‘click’ and ‘skilletlib’ to be installed. The output will contain all captured values
and filtered items in the ‘outputs’ key.

pip install click
pip install git+https://github.com/PaloAltoNetworks/skilletlib.git@develop#egg=skilletlib





For more information, see the Skillet Builder [https://skilletbuilder.readthedocs.io/en/latest/] documentation.






          

      

      

    

  

    
      
          
            
  
Example Skillet

In this example, we will create a skillet that allows the user to customize a single variable. Of
course, finding the correct XML and XPath information is not at all obvious. However, there are
many tools available to assist with this such as SLI [https://pypi.org/project/sli/] and Skillet Builder [https://skilletbuilder.readthedocs.io/en/latest/building_blocks/xml_and_skillets.html#tools-to-find-the-xpath].


XML Fragment

First, we’ll extract the parts of the configuration that comprise this ‘unit’ of configuration changes (a skillet).
For example, this portion of the configuration describes the log-settings we would like to modify:

<system>
    <match-list>
     <entry name="dhcp-log-match">
        <send-syslog>
            <member>mgmt-interface</member>
        </send-syslog>
        <filter>(eventid eq lease-start)</filter>
      </entry>
    </match-list>
</system>
<syslog>
    <entry name="mgmt-interface">
        <server>
            <entry name="mgmt-intf">
                <transport>UDP</transport>
                <port>514</port>
                <format>BSD</format>
                <server>{{ MGMT_IP }}</server>
                <facility>LOG_USER</facility>
            </entry>
        </server>
    </entry>
</syslog>





Notice here we have defined one variable: MGMT_IP. This will allow the user to insert their own management ip when
deploying.



Skillet file

The skillet file itself is a YAML file with a suffix of .skillet.yaml. You may also
prefix the filename, for example: example.skillet.yaml. See YAML Syntax for complete details.

name: example_log_setting
label: Log Setting Example
description: Example log setting to configure syslog
type: panos
extends:

labels:
  service_type: userid

variables:
  - name: MGMT_IP
    description: NGFW management IP address
    default: 192.168.0.1
    type_hint: ip_address

snippets:
  - name: log_settings
    cmd: set
    xpath: /config/shared/log-settings
    file: log_settings.xml





In this file, we give some basic information about what this skillet will do, what configuration bits will be applied,
and what variables the user can customize. Notice in the ‘variables’ section, we specify a variable entry with a ‘name’
that matches the variable defined in the XML fragment. The ‘snippets’ section will inform Panhandler where in the
configuration this fragment should be inserted (xpath) and where to find the fragment (file).



Rendered Form

This example.skillet.yaml will produce the following web form in Panhandler:

[image: _images/ph-example-skillet.png]




          

      

      

    

  

    
      
          
            
  
More Example Skillets


Example Skillets by Type

Example PAN-OS Skillet

Example REST Skillet

Example REST Skillet with Output Capturing

Example Python Skillet

Example Terraform Skillet

Example Validation Skillet



Example Skillets by Feature

Example Complex Validation Skillet

Example Skillet with When Conditionals

Example PAN-OS with Output Capturing



External Skillet Repositories

Here is a couple of Git repositories that contain numerous example Skillets.

Palo Alto Networks Skillets [https://github.com/paloaltonetworks/skillets].

SkilletLib is a library for parsing and executing Skillets in third party applications and tooling. The
SkilletLib repository [https://github.com/PaloAltoNetworks/skilletlib/tree/master/example_skillets] also has
many useful examples.

Palo Alto Networks World Wide CE team has a great collection of Skillets [https://github.com/wwce/] on Github.

Many other Skillets may be found on Github as well using the Skillets topic [https://github.com/topics/skillets].





          

      

      

    

  

    
      
          
            
  
When things go wrong

Sometimes you may hit bugs or other unexpected behaviours. This page should give you some information
about how to recover your environment in the event something goes sideways.


Ensuring you have the latest

New releases almost always feature mostly bugfixes. As such, if you encounter a problem, you
should first update Panhandler to the latest version. The recommended way to do that is to
run the installer script:

curl -s -k -L http://bit.ly/2xui5gM | bash







Restarting the docker container

Some types of problems can be fixed by restarting the container

# get the docker ID of the panhandler container
docker ps | grep panhandler

# use the 12 digit ID in the restart command
docker restart 3fd4e2c78557

# or as a one-linter
docker ps | grep panhandler | awk '{ print $1 }' | xargs -n 1 docker restart







Clearing the cache

If you are seeing inconsistent data in the UI after a failed git import or some other error condition,
this can indicate the cache is out of date. Since the cache survives a docker restart, you may need to manually
perform a clear. To clear the cache navigate to the following URL: http://127.0.0.1:8080/clear_cache


Note

You may need to change the port number above to match your environment





Cancelling a Task

Some skillets use a background task to perform it’s action. If this task appears to be looping or stuck, you can
cancel the task by navigating to the following URL: http://127.0.0.1:8080/cancel_task



Removing a Repository

If for some reason, panhandler cannot load a repository, or crashes on the repository details page, you may need
to manually remove the repository. The recommended way to start the panhandler container is to create a
volume mount from your $HOME directory. This ensure all persistent data will be stored in $HOME/.pan_cnc/panhandler. To
manually remove a repository, open a shell and navidate to $HOME/.pan_cnc/panhandler/repositories and use the rm -rf
command to remove it completely. You will then need to clear the cache as noted above.



Troubleshooting Docker Skillets

Docker Skillets require communication with the docker daemon on your host machine via a
special bind mount. First, ensure you have the proper bind mount configured on your Panhandler
container:

docker inspect panhandler -f "{{ .HostConfig.Binds }}"





Ensure you see the /var/run/docker.sock:/var/run/docker.sock in the returned list. If you
do not have the docker.sock listed in the output, ensure you the docker run command you are using
includes the parameter: -v /var/run/docker.sock:/var/run/docker.sock.

If you find that the volume is properly mounted, but you still cannot execute docker Skillets,
you may need to adjust the permissions and group mappings inside the container. Panhandler includes
tool to simplify this for you:

docker exec -u root -it panhandler /app/cnc/tools/create_docker_group.sh







The hammer approach

If none of the above things work, you may need to remove everything and start over. The installer
script can be used to do this and should be your first option:

curl -s -k -L http://bit.ly/2xui5gM | bash





Or, you may perform these steps manually. First, stop the container

# as a one-linter
docker ps | grep panhandler | awk '{ print $1 }' | xargs -n 1 docker stop





Next, remove all persistent data

# be careful with this one!
rm -rf $HOME/.pan_cnc/panhandler





Update to the latest docker image and create a new container

docker pull paloaltonetworks/panhandler:latest
docker run -t -v $HOME:/home/cnc_user -p 8080:8080 paloaltonetworks/panhandler:latest







File a bug

If you need to perform any of the above steps, then this is bug. Please file a bug report with as much detail as
possible here: https://github.com/paloaltonetworks/panhandler/issues





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Creating and Editing Skillets

In Panhandler 4.0, you now have the ability to generate Skillets dynamically. This feature
works by generating the difference between two saved configurations. These configurations
can the candidate, running, baseline, or any saved configuration. The currently
supported options for skillet generation are:


	Skillet from a running PAN-OS or Panorama instance using saved configurations or the running configuration


	Skillet from two exported configurations


	Set commands from a running PAN-OS or Panorama instance using saved configurations or the running configuration


	Set commands from two exported configurations


	Full Configuration template from a saved configuration




[image: _images/ph-create-skillet.png]

Skillet Editor

The Skillet Editor allows you to copy, edit, create, and delete Skillets in a local branch
of a repository. The Editor allows GUI based editing of all aspects of a Skillet including
editing and ordering snippets, dynamically detecting variables, creating and ordering variables,
and updating the metadata.

[image: _images/ph-skillet-editor.png]
The Skillet Editor currently supports the following skillet types:


	panos


	panorama


	pan-validation


	rest


	template




[image: _images/ph-skillet-editor-edit-snippet.png]


Other Tools

If you prefer a CLI experience, check out SLI [https://pypi.org/project/sli/]

For more information, see the Skillet Builder [https://skilletbuilder.readthedocs.io/en/latest/] documentation.





          

      

      

    

  

    
      
          
            
  
Creating and Debugging Validation Skillets

Panhandler allows you to edit and debug validation skillets using the Skillet Editor. See Creating and Editing Skillets.

From the repository details page, click the ‘edit’ control for the Skillet you want to edit.

[image: _images/ph-edit-skillet.png]
At the bottom of the Skillet Editor, click the ‘Debug’ button to enter the Skillet Debugger.

[image: _images/ph-debug-skillet-button.png]


Skillet Debugger

The Skillet Debugger allows you to step through each snippet and see the context between steps. This is
especially useful to understand the various captures and filters available.

[image: _images/ph-skillet-debugger.png]
To use the debugger, manually enter Device connection information into the Context input. You may also edit
any defined variables here that may impact the skillet logic.


Note

Ensure the context input is valid JSON.



Click the ‘play’ button to execute the next snippet. The ‘Outputs’ will show the returned value from the snippet.
The ‘Context’ will also contain all captured values as well. This allows you to quickly experiment with various
capture_pattern, capture_list, capture_value, and filter_items options.

You may also use the ‘Skip Ahead to Snippet’ in order to test a specific snippet execution.


Note

Be sure you understand what variables a snippet requires in the context when skipping ahead. In some cases,
you’ll need play the snippets in order to get the proper context values in place.




Manual Debugging with SLI

SLI [https://pypi.org/project/sli/] is a command line interface to
skilletlib [https://github.com/paloaltonetworks/skilletlib] and offers
a great way to test and discover all the various features of skillets.

SLI makes it easy to quickly verify XPath queries, capture queries, and so on.

# Test and output a capture_list that displays names of all decryption policies
sli capture list  "/config/devices/entry[@name='localhost.localdomain']/vsys/entry/rulebase/decryption/rules/entry/@name"

# Same as above, except this command will store the output to the default context in the variable "decryption_rules"
sli capture -uc list "/config/devices/entry[@name='localhost.localdomain']/vsys/entry/rulebase/decryption/rules/entry/@name" decryption_rules

# Capturing an object works similar to capturing a list
sli capture object "/config/devices/entry[@name='localhost.localdomain']/vsys/entry/rulebase/decryption"

# Capturing an expression allows further processing on data already stored in the context
sli capture -uc expression "decryption_rules | json_query('[].entry[].category.member[]')"

# Windows requires an additional escape character on double quotes, a ` is required in addition to the \
sli capture -uc expression "decryption_obj | json_query('decryption.rules.entry[].\`"@name\`"')"





SLI is available on Pypi.org [https://pypi.org/project/sli/] and can be easily installed like this:

pip install sli







Manual Debugging with Python

In some cases, it may be desirable to use Python or a debugger like PyCharm or pdb for building your validation
skillet. Here is an example python script that will load a config file from the local filesystem and run a
skillet. You may use the ‘filter_snippets’ option to only run specified snippets as desired.

import json

import click

from skilletlib.skilletLoader import SkilletLoader


@click.command()
@click.option("-c", "--config_file", help="Local Config File", type=str, default="config.xml")
@click.option("-d", "--skillet_dir", help="Skillet Directory", type=str, default=".")
@click.option("-f", "--snippet_filter", help="Snippet Filter Type", type=str, default="")
@click.option("-s", "--snippet_filter_value", help="Snippet Filter Value", type=str, default="")
def cli(config_file, skillet_dir, snippet_filter, snippet_filter_value):
    sl = SkilletLoader()
    skillets = sl.load_all_skillets_from_dir(skillet_dir)
    d = skillets[0]

    context = dict()
    with open(config_file, 'r') as config:
        context['config'] = config.read()

    if snippet_filter != "":
        context['__filter_snippets'] = {
            snippet_filter: snippet_filter_value
        }

    out = d.execute(context)

    print('=' * 80)
    print(json.dumps(out, indent=4))
    print('=' * 80)


if __name__ == '__main__':
    cli()





The above requires ‘click’ and ‘skilletlib’ to be installed. The output will contain all captured values
and filtered items in the ‘outputs’ key.

pip install click
pip install git+https://github.com/PaloAltoNetworks/skilletlib.git@develop#egg=skilletlib





For more information, see the Skillet Builder [https://skilletbuilder.readthedocs.io/en/latest/] documentation.





          

      

      

    

  

    
      
          
            
  
Panhandler Environments

Often times, it is desirable to store environment specific data outside of a git repository. Panhandler provides
a mechanism to do this using ‘Environments’.


What is an Environment

An environment is a collection of secrets that can be loaded and managed as a unit. For example, you may want to keep
all AWS related secrets together in an environment called ‘AWS’. When panhandler displays a web form from a configuration
set, any variables from the configuration template that share a name with a secret in the currently loaded environment,
that value will be pre-populated.

This is especially useful if you have multiple environments such as ‘AWS-QA’, ‘AWS-PROD’, and ‘AWS-DEV’.



Unlocking Environments

To load an environment, click on the ‘lock’ icon on the right of the navigation bar.

[image: _images/ph-env-locked.png]
You will be presented with an unlock password dialog. This password will be used to protect any secrets you store
in your environments in an encrypted file in your home directory. If this encrypted file does not already exist it will
be created and protected with the password you enter here.

[image: _images/ph-unlock-env.png]
Once unlocked, you can manage your environments by creating new ones, cloning, configuring, or deleting existing ones.

[image: _images/ph-environments.png]
Choosing the ‘Configure’ option on an environment allows you to add, remove, or overwrite secrets stored within them.

[image: _images/ph-env-details.png]
Choosing to ‘Load’ an environment makes that env available to pre-populate template fields. It will also be available
as a ‘pop-over’ that you can use to copy and paste secrets into template fields. This is useful when you want to
store secrets like API_KEYS


Note

Template variables that share the same ‘name’ as a secret in the currently loaded environment will be
pre-populated with the value of that secret. You can find the exact name of a specific variable field
by looking at the ‘.meta-cnc.yaml’ file for that form.



[image: _images/ph-env-menu.png]




          

      

      

    

  

    
      
          
            
  
Adding a New Skillet Repository

Panhandler is preloaded with a wide set of skillets yet you may still have to manually add skillet repos.


Import a New Skillet

From the main menu, choose Import Skillets.

[image: _images/ph-menu.png]
The import repository fields allow you to specify the repo name and URL to import. You may
import repositories from any git server, including GitHub, gitlab, gogs, etc.

To import a repository from Github, click on the ‘Clone or Download’ button and copy the full HTTPS link
shown.

[image: _images/ph-github-clone-url.png]

Warning

Private Repositories must use the SSH based URL. You must also import your Panhandler
SSH Key into your private repository.



Also, note which branch you want to import. The list of available branches can be found in Github by clicking
the ‘Branch: master’ button on the main page of the repository.

[image: _images/ph-github-branches.png]
Enter this information in the ‘Import Skillets’ form to import the repository and gain access to the
Skillets contained within.

[image: _images/ph-import-repo.png]
Once successful, you will see the complete list of imported repositories including the newly added repo.

At this stage, going to the Template Library will show any additional skillets in their respective categories.



Update a Skillet Repository

From the main menu, choose Repositories.

[image: _images/ph-menu.png]
Click on Details for the repository of interest.

[image: _images/ph-repo-details-full.png]
The repo window will show a description of the repo along with the last few content changes.

Choose Update to Latest to check for and pull template updates.


Note

Already up to date will show that no changes were made to the source skillet and no udpates required.





Using a Private Git Repository

In order to use private repositories, you must first import the Panhandler public SSH key
into your upstream repository or account.

[image: _images/ph-user-menu.png]
Use the ‘View SSH Public Key’ option in the user menu to see the autogenerated key for Panhandler.

Instructions for importing this key into your repository can be found here:


	GitHub [https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account]


	GitLab [https://docs.gitlab.com/ee/ssh/#adding-an-ssh-key-to-your-gitlab-account]


	BitBucket [https://confluence.atlassian.com/bitbucket/access-keys-294486051.html]


	Others [https://duckduckgo.com/?q=add+SSH+key+to+git+repository&t=ffab&ia=web]





Warning

You must use the SSH based git URL when importing your private repository as HTTPS authentication
is not supported!







          

      

      

    

  

    
      
          
            
  
Labels

Labels are key/value pairs attached to skillets. Labels are optional and allow adding additional parameters to Skillets
that may not be implemented by all Tools. Labels can be used for grouping, searching, sorting, and identifying skillets
beyond just a ‘name’ attribute. Labels can be used to extend Skillet functionality in arbitrary ways going forward. This
behaviour is very much influenced by BGPv4 labels and Kubernetes labels.


Panhandler Supported Labels

Panhandler recognizes the following labels:


	collection

The collection label is used to group like Skillets. A skillet may belong to multiple collections. The collection
label value is a list of collection to which the skillet belongs.





labels:
  collection:
    - Example Skillets
    - Test Skillets
    - Validation Skillets






	order

Panhandler uses the ‘order’ label to sort the Skillets. Skillets without an ‘order’ label are sorted alphabetically
by their ‘label’ attribute. Skillets with a lower ‘order’ tag will be display before those with a higher ‘order’ tag.





labels:
  order: 10






	help_link

The help_link label can be used to display a link to additional documentation about a skillet. This will be shown
in the ‘Help’ dialog from the ‘?’ icon in the top right hand corner of the Skillet input form.





labels:
  help_link: https://panhandler.readthedocs.io/en/master/variables.html






	help_link_title

The help_link_title will set the displayed title of the help_link in the Help dialog.





labels:
  help_link: https://panhandler.readthedocs.io/en/master/variables.html
  help_link_title: All available Variable Documentation









          

      

      

    

  

    
      
          
            
  
Release History


V4.0


	Released 9-2020




New Features:


	
	Skillet Editor

	A new UI to edit all aspects of a Skillet.







	
	Skillet Creation Tools

	This feature allows you to build a skillet from scratch in a number of different ways. For example, you
can build a skillet from the differences between two saved configuration files.







	
	Improved Terraform Support

	Terraform now uses a docker image in the backend, which allows any arbitrary terraform version to be supported.
This allows the skillet builder to choose customized docker image containing any version of terraform and
supporting libraries.







	
	Support for SSH based git repositories

	This allows you to use private git repositories as well as push local changes back upstream.











V3.1


	Released 3-2020




New Features:


	
	Support for docker type skillets

	This brings support for Ansible, Shell scripts, custom binaries, configurable Terraform versions, and more. See
github [https://github.com/PaloAltoNetworks/Skillets] for examples.











V3.0


	Released 2-2020




New Features:


	
	New skillet type: pan_validation

	This allows PAN-OS configuration file analysis using a jinja language expressions. More example can be found on
github [https://github.com/PaloAltoNetworks/Skillets].







	
	Dynamic UI elements

	Allows variables to be shown or hidden based on the value of another variable.







	
	New variable types

	File uploads, Dynamic lists, new validations and many more [https://github.com/PaloAltoNetworks/Skillets/blob/master/inputs/all_inputs/.meta-cnc.yaml].











V2.2


	Released 6-2019




New Features:


	Improved Input validation


	
	Python script support with configurable input types.

	Script arguments can be passed via cli arguments or as env variables







	
	Automatic update detection.

	Panhandler will check if you are running the latest and greatest version on startup







	
	PAN-OS Skillet debug support

	This allows you to verify what is going to be pushed to a PAN-OS device before actually pushing







	
	Skillet debug on import

	Checks all skillets during repository import for syntax errors







	Collections page now supports filtering and sorting








          

      

      

    

  

    
      
          
            
  
Switching between Latest and Develop Containers

PanHandler runs in a Docker container, the main build tagged as ‘latest’.

There is also a develop branch with new features and updates. Although not the recommended release, some users may
want to work with develop and explore new features. Some skillets being developed may also be dependent on newer features.


Updating the Running Latest Version

This script will install or update to the latest ‘dev’ image for Panhandler. This is recommended for developers
or power-users who understand this code may be unstable and not all features may work all the time.

curl -s -k -L http://bit.ly/34kXVEn  | bash





The following bash script can be copy-pasted into the terminal to stop the PanHandler process, pull the latest,
and run again. The example uses port 9999 for web access.

export PANHANDLER_IMAGE=paloaltonetworks/panhandler
export PANHANDLER_ID=$(docker ps | grep $PANHANDLER_IMAGE | awk '{ print $1 }')
docker stop $PANHANDLER_ID
docker rm -f $PANHANDLER_ID
docker pull $PANHANDLER_IMAGE
docker run -t -p 9999:80 -t -v $HOME/.pan_cnc:/home/cnc_user/.pan_cnc $PANHANDLER_IMAGE







Updating the Running Develop Version

The following bash script can be copy-pasted into the terminal to stop the PanHandler process, pull the develop version,
and run again. The example uses port 9999 for web access.

export PANHANDLER_IMAGE=paloaltonetworks/panhandler:dev
export PANHANDLER_ID=$(docker ps | grep $PANHANDLER_IMAGE | awk '{ print $1 }')
docker stop $PANHANDLER_ID
docker rm -f $PANHANDLER_ID
docker pull $PANHANDLER_IMAGE
docker run -t -p 9999:80 -t -v $HOME/.pan_cnc:/home/cnc_user/.pan_cnc $PANHANDLER_IMAGE_D







Switching from Latest to Develop

These commands still stop the latest main release version then pull down and run the latest develop version.
The latest release container will be deleted.

export PANHANDLER_IMAGE_M=paloaltonetworks/panhandler
export PANHANDLER_IMAGE_D=paloaltonetworks/panhandler:dev
export PANHANDLER_ID=$(docker ps | grep $PANHANDLER_IMAGE_M | awk '{ print $1 }')
docker stop $PANHANDLER_ID
docker rm -f $PANHANDLER_ID
docker pull $PANHANDLER_IMAGE_D
docker run -t -p 9999:80 -t -v $HOME/.pan_cnc:/home/cnc_user/.pan_cnc $PANHANDLER_IMAGE_D







Switching from Develop to Latest

These commands still stop the develop  version then pull down and run the latest main release version.
The develop version container will be deleted.

export PANHANDLER_IMAGE_M=paloaltonetworks/panhandler
export PANHANDLER_IMAGE_D=paloaltonetworks/panhandler:dev
export PANHANDLER_ID=$(docker ps | grep $PANHANDLER_IMAGE_D | awk '{ print $1 }')
docker stop $PANHANDLER_ID
docker rm -f $PANHANDLER_ID
docker pull $PANHANDLER_IMAGE_M
docker run -t -p 9999:80 -t -v $HOME/.pan_cnc:/home/cnc_user/.pan_cnc $PANHANDLER_IMAGE_M





When switching between dev and latest clear the cache with the following link:

http://localhost:9999/clear_cache





          

      

      

    

  

    
      
          
            
  
Keeping Up to Date

As panhandler is a quickly evolving project with new features added frequently, it is advisable to ensure you update
to the latest periodically.


Update Script

The following script is useful to update your version of Panhandler to the latest while retaining all your settings,
port mappings, etc.

curl -s -k -L http://bit.ly/2xui5gM | bash





This script will pull down a bash script that will determine if your version of Panhandler is the latest. If not,
it will pull the latest image from Docker Hub [https://cloud.docker.com/u/paloaltonetworks/repository/docker/paloaltonetworks/panhandler/general], remove the old container and create a new container with the same
port mapping as the previous version.


Note

If you are upgrading from a very old Panhandler version, you may need to import Skillet repositories again.





Manually updating the Panhandler Container

Panhandler is primarily distributed as a docker image on Docker Hub [https://cloud.docker.com/u/paloaltonetworks/repository/docker/paloaltonetworks/panhandler/general]. To ensure you have the latest version, check
for new releases here [https://cloud.docker.com/u/paloaltonetworks/repository/docker/paloaltonetworks/panhandler/general]. To manually launch a newer version via docker:

docker pull paloaltonetworks/panhandler:latest
docker run -p 8080:8080 -t -v $HOME:/home/cnc_user paloaltonetworks/panhandler





This will create a container based on the latest image tag. Versioned panhandler images are also available and can be
found on Docker Hub.


Note

You must periodically pull new images from Docker hub to ensure you have the latest software with new features and
bug fixes.



To ensure you have the most up to date software, perform a docker pull and specify your desired release tag.

export TAG=latest
docker pull paloaltonetworks/panhandler:$TAG
docker run -p 8080:8080 -t -v $HOME:/home/cnc_user paloaltonetworks/panhandler:$TAG







Ensuring your Panhandler container is using the latest image

If you already have Panhandler running, you may need to use the following commands to first stop the existing
container. Note the image tag in the PANHANDLER_IMAGE variable below. You may want to change this to ‘latest’
or some other specific release tag like ‘2.2’

export PANHANDLER_IMAGE=paloaltonetworks/panhandler:dev
export PANHANDLER_ID=$(docker ps | grep $PANHANDLER_IMAGE | awk '{ print $1 }')
docker stop $PANHANDLER_ID
docker rm -f $PANHANDLER_ID
docker pull $PANHANDLER_IMAGE
docker run -p 8080:8080 -t -v $HOME:/home/cnc_user -d $PANHANDLER_IMAGE







Cleaning up old versions

Once you update to a newer version of Panhandler, the older images can still be left around, taking up space on your
hard drive. A common best practice is to occasionally remove old images with the following docker command:

docker image prune






Note

This command may take some time to complete, up to several minutes. The longer it takes, the more space
it’s saving on your hard drive!



On my system, this command can regularly reclaim over 10GB of space.

Another good command to occasionally run is:

docker container prune





This will remove all stopped containers and recover their used disk space as well.





          

      

      

    

  

    
      
          
            
  
PAN-OS Validation Skillets

PAN-OS Validation skillets are used to check the compliance of a PAN-OS device configuration. They are comprised
of a series of ‘tests’ that each check a specific portion of the configuration. Validation tests can be executed
in both ‘online’ as well as ‘offline’ mode.

Online mode will query the running configuration of a running NGFW via it’s API.

Offline node will execute the tests against an uploaded configuration file. This is especially useful to checking
things like configuration backups, or devices where direct API access is not possible.



Validation Tests

Each test is evaluated using jinja [https://jinja.palletsprojects.com/en/2.10.x/templates/] boolean expressions. This means each test can only result in a pass or fail. In
order to perform simple logical operations on the XML configuration, it must first be converted into variables that
can be passed to the jinja templating engine. Once the variables have been captured, we can test each one of them
with some logical operation.


Variable Capturing

Panhandler will automatically inject the ‘config’ variable into the validation skillet
context to simplify capturing additional variables from it. The ‘config’ variable is the ‘running’
configuration from the target device, or an uploaded configuration from the user. In either case, the ‘config’ variable
will always be present for validation skillets.

The following example shows variable capturing:

- name: parse config variable and capture outputs
    cmd: parse
    variable: config
    outputs:
      # create a variable named 'zone_names' which will be a list of the attribute 'names' from each zone
      # note the use of '//' in the capture_pattern to select all zones
      # the '@name' will return only the value of the attribute 'name' from each 'entry'
      - name: zone_names
        capture_pattern: /config/devices/entry/vsys/entry/zone//entry/@name
      # note here we can combine an advanced xpath query with 'capture_object'. This will capture
      # the full interface definition from the interface that contains the 'ip_to_find' value
      - name: interface_with_ip
        capture_object: /config/devices/entry/network/interface/ethernet//entry/layer3/ip/entry[@name="{{ ip_to_find }}"]/../..





This example captures two variables from the config: ‘zone_names’ and ‘interface_with_ip’. The ‘parse’ cmd type informs
Panhandler that this step is going to pass the variable named in the ‘variable’ attribute to the output. The ‘outputs’
attribute will then determine what specific parts of this variable we want to capture. The value of the ‘outputs’
attribute is a list of dicts. Each dict represents one new variable that will be captured. The two options for
what you want to capture are ‘capture_pattern’ and ‘capture_object’. Both types will query the ‘config’ variable
using an XPATH expression. The main difference is in how the results of that query are processed and returned.



Capture Pattern

The ‘capture_pattern’ attribute will try to intelligently interpret the results of the XPATH query. This is most useful
as in the above when you would like to return a list of element attributes, or a list of element text values.

In the above example, the variable ‘zone_names’ will be a list with the following:

zone_name = [
  "trust",
  "untrust",
  "dmz"
]







Capture Object

The ‘capture_object’ attribute will convert the returned XML into an dictionary object using the python ‘xmltodict’
library. This is especially useful when you want to perform a large number of tests on the same basic part of the
config. This allows you to ‘capture’ one part of the config, then perform logic against lots of different parts of it.

In the example above, the variable ‘interface_with_ip’ will have the value:

interface_with_ip = {
  "layer3": {
    "ip": {
      "entry": {
        "@name": "10.10.10.10/24"
      }
    }
  }
}







Validation Testing

Once you have captured the various variables you want to test, use the ‘validate’ cmd type.

For example:

- name: zones_are_configured
  cmd: validate
  label: Ensure at least one zone is Configured
  test: zone_names is not none
  documentation_link: https://iron-skillet.readthedocs.io/en/docs_dev/viz_guide_panos.html#device-setup-management-general-settings





The ‘test’ attribute uses the jinja [https://jinja.palletsprojects.com/en/2.10.x/templates/] expression language to perform a boolean test on the supplied expression. In
this example, if zone_names is defined and has a value, then the test will pass.



A more complex example

This example is slightly more complex and uses a number of features to accomplish this compliance check:

- name: device_config_file
  cmd: parse
  variable: config
  outputs:
    # capture all the xml elements under statistics-service for later evaluation
    - name: telemetry
      capture_object: /config/devices/entry[@name='localhost.localdomain']/deviceconfig/system/update-schedule/statistics-service

- name: telemetry_fully_enabled
  label: enable all telemetry attributes
  test: |
    (
    telemetry | element_value('statistics-service.application-reports') == 'yes'
    and telemetry | element_value('statistics-service.threat-prevention-reports') == 'yes'
    and telemetry | element_value('statistics-service.threat-prevention-pcap') == 'yes'
    and telemetry | element_value('statistics-service.passive-dns-monitoring') == 'yes'
    and telemetry | element_value('statistics-service.url-reports') == 'yes'
    and telemetry | element_value('statistics-service.health-performance-reports') == 'yes'
    and telemetry | element_value('statistics-service.passive-dns-monitoring') == 'yes'
    and telemetry | element_value('statistics-service.file-identification-reports') == 'yes'
    )
  fail_message: telemetry should be enabled for all attributes
  documentation_link: https://iron-skillet.readthedocs.io/en/docs_dev/viz_guide_panos.html#device-setup-telemetry-telemetry





Here, we first capture the XML elements found under ‘statistics-service’ if any are found. This is then converted
into a variable object with the name ‘telemetry’. The ‘telemetry’ object when fully configured will have the following
structure:

telemetry = {
  "statistics-service": {
    "application-reports": "yes",
    "threat-prevention-reports": "yes",
    "threat-prevention-pcap": "yes",
    "threat-prevention-information": "yes",
    "passive-dns-monitoring": "yes",
    "url-reports": "yes",
    "health-performance-reports": "yes",
    "file-identification-reports": "yes"
  }
}





To facilitate a simple syntax to check this, custom jinja [https://jinja.palletsprojects.com/en/2.10.x/templates/] filters have been developed including ‘element_value’. We
use ‘element_value’ here to return the value found at a specific ‘path’ inside the object. The ‘path’ is a ‘.’ or ‘/’
separated list of attributes to check.

# this will evaluate to true in this case because the path 'statistics-service.application-reports' exists
# and the value found therein is equal to the desired value of 'yes'
telemetry | element_value('statistics-service.application-reports') == 'yes'





For more information about all available custom filters and their example uses, see the list of filters [https://github.com/PaloAltoNetworks/skilletlib/blob/master/docs/jinja_filters.rst] documentation
here [https://github.com/PaloAltoNetworks/skilletlib/blob/master/docs/jinja_filters.rst].




PAN-OS Validation Examples

To get a sense of all that is possible, here are a couple of complete examples.

CIS Benchmarks [https://gitlab.com/panw-gse/as/cis-benchmarks] will validate a PAN-OS
device for CIS [https://www.cisecurity.org/] compliance.

STIG Benchmarks [https://gitlab.com/panw-gse/as/stig_skillets] will validate a PAN-OS device
for STIG [https://public.cyber.mil/stigs/] compliance.



Hints, Tips, Tricks


Start with a Pass

Because you often need to know the structure of the configuration and the resulting objects, it is always a good idea
to start with a fully configured PAN-OS NGFW that will ‘pass’ the validation test you are writing.



Use Tools to explore the config

You can also use the Skillet Builder [https://github.com/PaloAltoNetworks/skilletbuilder] tools found on github here: https://github.com/PaloAltoNetworks/skilletbuilder.
These are a set of Skillets designed to aid in building Skillets and especially Validation Skillets. Start with an
example validation [https://github.com/PaloAltoNetworks/skilletlib/tree/master/example_skillets] skillet from here: https://github.com/PaloAltoNetworks/skilletlib/tree/master/example_skillets
and copy the contents in the ‘Skillet Test Tool’. This will allow you to quickly test various capture patterns
and run different types of test quickly. It will also show you the structure of the XML snippets and objects returned
from your XPATH queries.





          

      

      

    

  

    
      
          
            
  
Variables

Variables in a Skillet determine what a user can modify or customize before deployment. In Panhandler, these get
generated into a web form that a user can fill out. Each variable can have it’s own ‘type’ determined by the ‘type_hint’
attribute in the variable declaration. This page lists all the available type hints for reference.


Variable Types


	text

Default input type for user input. Optional allow_special_characters if false will ensure only
letters, digits, underscore, hyphens, and spaces are allowed in the input. Set to True to allow all special
characters. Default is to allow special characters. Optional attributes allows forcing a minimum and/or
maximum length of the entered value.





- name: FW_NAME
  description: Firewall hostname
  default: panos-01
  type_hint: text
  help_text: Hostname for this firewall.
  allow_special_characters: false
  attributes:
    min: 6
    max: 256






	password

This type will mask user input by rendering a password type input box.





- name: user_password
  description: Firewall Password
  default:
  type_hint: password






	ip_address

This type will ensure the entered value matches an IPv4 or IPv6 pattern without a subnet mask.





- name: ip_address
  description: IP Address
  default: 0.0.0.0
  type_hint: ip_address






	fqdn_or_ip

This type will ensure the entered value matches an IPv4, IPv6, or a valid hostname pattern. This is the most
flexible option for hostname, FQDNs, ip addresses or CIDRs.





- name: host
  description: Target Host
  default: 0.pool.ntp.org
  type_hint: fqdn_or_ip






	url

This type will ensure the entered value matches a valid URL scheme.





- name: clone_url
  description: Git Repo Clone URL
  default: https://github.com/PaloAltoNetworks/Skillets.git
  type_hint: url






	cidr

This type will ensure the entered value matches an IPv4 or IPv6 CIDR.





- name: ip_address
  description: IP Address
  default: 192.168.122.2/24
  type_hint: cidr






	email

This type will ensure the entered value matches an email pattern.





- name: email
  description: Email
  default: support@noway.com
  type_hint: email
  help_text: Enter your email address here to receive lots of spam






	number

This type will ensure the entered value is an integer. You may optionally supply the min and max
attributes to ensure the entered value do not exceed or fall below those values.





- name: vlan_id
  description: VLAN ID
  default: 1001
  type_hint: number
  attributes:
    min: 1000
    max: 2000






	float

This type will ensure the entered value is a float. You may optionally supply the min and max
attributes to ensure the entered value do not exceed or fall below those values.





- name: price_per_mbps
  description: Price Per Mbps
  default: 1.50
  type_hint: float
  attributes:
    min: 1.00
    max: 500.00






	dropdown

This type will render a select input control. This ensures the user can only select one of the options
given in the dd_list.





- name: yes_no
  description: Yes No
  default: 'no'
  type_hint: dropdown
  dd_list:
    - key: 'Yes I do'
      value: 'yes'
    - key: 'No I dont'
      value: 'no'






Note

The default parameter should match the value and not the key. The key is what will be shown to the user
and the value is what will be used as the value of the variable identified by name.




Warning

Some values such as yes, no, true, false, on, off, etc are treated differently in YAML. To ensure these values are
not converted to a boolean type, ensure to put single quotes ‘ around both the key and the value as in
the example above. Refer to the YAML specification for more details: https://yaml.org/type/bool.html




	text_area

This type renders a TextArea input control. This allows the user to enter multiple lines of input. The optional
attributes attribute allows you to customize the size of the text area control.





- name: text_area
  description: Multi-Line Input
  default: |
    This is some very long input with lots of
    newlines and white    space
    and stuff. The optional attributes key can also be specified
    to control now the text_area is rendered in panhandler and other cnc apps.
  type_hint: text_area
  attributes:
    rows: 5
    cols: 10






	json

This type renders a TextArea input control and ensures the input is properly formatted JSON data





- name: json_string
  description: JSON Input
  default: |
      {
          "key_test": "value_test",
          "key2_test": "value2_test"
      }
  type_hint: json






	disabled

This type will show the default value in an input control, but the user cannot change it. This is useful to
show values but not allow then to be changed.





- name: DISABLED
  description: No Bueno
  default: panos-01
  type_hint: disabled






	radio

This type allows the user to select one option out of the rad_list.





- name: radio_box_example
  description: radios
  default: maybe
  type_hint: radio
  rad_list:
    - key: 'Yes'
      value: 'yes'
    - key: 'No'
      value: 'no'
    - key: 'Maybe'
      value: 'maybe'






	list

This type will allow the user to input multiple entries. The values of the multiple
entries will be converted to an appropriate type for the Skillet type being used. For
python, the entries will be converted to a comma separated list. For Terraform, the
values will be converted to a terraform appropriate string representation.





- name: list_input
  description: IP Subnets
  default: 10.10.10.1/24
  type_hint: list






	hidden

This type will NOT show an input form control to the user, but the default value will be passed to the
skillet. This is useful is you want to ‘capture’ an input from another skillet and pass it into the input
of this skillet without having to include it in the input form.





- name: previous_value
  description: from previous skillet in workflow
  default: some_value
  type_hint: hidden






	file

This type will upload a file to a temporary directory and set the variable value to the full path to the file. This
is useful for python Skillets to take the file path as an input and open and handle the file contents itself.





- name: uploaded_file_path
  description: Upload a File
  default:
  type_hint: file






Panhandler Generated UI

Because Skillets are essentially tooling agnostic, it’s up to the tool to implement the UI presented to the user.
Some tools may prefer a different approach, or may not even need a UI at all. For example, in a CI/CD pipeline, the
value of the variables may be obtained via the OS environment. A script may use command line arguments, etc.

Panhandler generates a fully customized UI for each Skillet that is configured via the types of ‘type_hint’ supplied
with each variable. By default, this is a static web form with a single input form control for each
variable.



Dynamic UI Elements

In some cases, it may be desirable for the UI to be more dynamic. Each variable can include ‘hints’ about how the UI
should behave, but these, of course, are not guaranteed to be implemented in all tooling. Panhandler will produce
dynamic UI elements in the following cases:


	source

The optional source attribute on dropdown, radio, and checkbox type_hints will use the value of the ‘source’
attribute as a variable. If this variable is found in the context and it is a list,
it’s value will be used to populate the form control. If the variable is not found, the form control reverts
to a standard ‘text’ input as a fallback.





- name: selected_interface
  description: Interface
  default: not-saved
  type_hint: dropdown
  source: interface_names


If the 'type_hint' is 'text' and the 'source' variable is a list, then multiple text input controls will be shown
to the user, one for each item in the list. The resulting variable captured after the form is POSTed will be a
'dict' with a key for each item in the list, and it's value from the user. This is useful to capture things like
an ip address for each interface in a list.





    - name: interface_ips
      description: Interface IP Address For
      default: 10.10.10.10
      type_hint: text
      source: interface_names


In this example, a text input control will be generated for each of the items found in the 'interface_names' list.
Assume the 'interface_names' variable contained the following:





"interface_names": [
  "ethernet1/1",
  "ethernet1/2",
  "ethernet1/3",
  "ethernet1/4",
]






	The resulting UI form will include 4 Text inputs. The item in the list will be appended to the description

	and used as the text input label. After the user fills in the information in all 4 text inputs, the
interface_ips variable in the jinja context will have the following structure:





"interface_ips": {
  "ethernet1/1": "10.10.10.11",
  "ethernet1/2": "10.10.10.12",
  "ethernet1/3": "10.10.10.13",
  "ethernet1/4": "10.10.10.14",
}






	toggle_hint

The optional ‘toggle_hint’ attribute will show a field only when the ‘source’ variable’s value matches the
configured ‘value’. If the ‘source’ is not found, or it’s current value does not match ‘value’, this form
control will be hidden. This is especially useful when paired with a ‘dropdown’ select control. You may provide
more than one option for the ‘value’ by passing in a list. The field will be shown if any of the
values match.





- name: bgp_asn
  description: Only Required when BGP is enabled
  default: 64000
  type_hint: text
  toggle_hint:
    source: bgp_type
    value: enable

- name: move_rule
  description: move rule location
  default: top
  type_hint: dropdown
  dd_list:
   - key: after
     value: after
   - key: before
     value: before
   - key: top
     value: top
   - key: bottom
     value: bottom

- name: ref_rule_name
  description: rule to move if before or after selected
  default: rule name
  type_hint: text
  toggle_hint:
    source: move_rule
    value:
      - before
      - after










          

      

      

    

  

    
      
          
            
  
Windows Installation

Running panhandler on Windows is possible through docker. The most reliable setup method at this time is to run docker
commands directly through PowerShell backed by WSL 2. This process will require multiple reboots so plan accordingly.
Other installation methods may not provide appropriate access to the docker daemon from the running panhandler
container resulting in certain skillet types not functioning.


Install WSL 2

Begin by installing WSL 2. Microsoft has good documentation on how to do this here:

https://docs.microsoft.com/en-us/windows/wsl/install-win10

If unsure about a Linux distribution to use, choose the latest Ubuntu. Verify you can access WSL 2 before continuing.



Install Docker Desktop

After WSL 2 functionality is verified, install the latest Docker Desktop for Windows using the following tutorial from
docker.

https://docs.docker.com/docker-for-windows/install/


	During the install, ensure the following settings:

	
	Use the WSL2 based engine, using “Hyper-V” may lead to some known problems


	Start Docker Desktop when you login, it will allow panhandler to auto start on boot


	DO NOT select “Expose daemon on tcp://localhost:2375 without TLS”


	DO NOT select “Enable experimental features”


	DO NOT enable “Kubernetes”








Unless the installer states otherwise, these settings can be updated by right clicking the docker icon in your system
tray in the bottom right of your Windows screen and selecting “Settings”.

Although WSL 2 is required for operation, you will not be using WSL 2 to talk to docker. Open PowerShell and type
“docker ps” to verify your docker cli is working and able to talk to the docker daemon. You should see output similar
to this with no errors. This has to be working before you can proceed.

[image: _images/ph-windows-1.png]
Another good test to perform to ensure docker is running fine is to run the docker “Hello world” image. From PowerShell
type this command:

docker run --rm -it hello-world





You should get an output similar to this:

[image: _images/ph-windows-2.png]


Install Panhandler

At this point, you are ready to install and start panhandler. In PowerShell, issue this command to pull down the latest
panhandler image.

docker pull paloaltonetworks/panhandler:latest





This will take a minute, but you should get output similar to this:

[image: _images/ph-windows-3.png]
With the image downloaded, all that’s left to do is create the volumes and start panhandler. Docker volumes are virtual
storage entities that provides a way to upgrade the image without losing app data. Create the volumes by running these commands:

docker volume create CNC_VOLUME
docker volume create PANHANDLER_VOLUME





You can verify the volumes have been created by running this command and checking the output matches to the image below:

docker volume list





[image: _images/ph-windows-4.png]
Now you can start panhandler by coping this entire command block into PowerShell. This command sets a restart policy
of always, which ensures panhandler will restart with your computer and always run unless you stop it.

docker run `
    --name panhandler `
    -v //var/run/docker.sock:/var/run/docker.sock `
    -v PANHANDLER_VOLUME:/home/cnc_user `
    -v CNC_VOLUME:/home/cnc_user/.pan_cnc `
    -d -p 8080:8080 `
    --restart=always `
    paloaltonetworks/panhandler:latest





That command will result in a long hash that will serve as the ID for the container, but you can still reference it
with the name “panhandler”.

[image: _images/ph-windows-5.png]
After a few seconds, you should be able to access panhandler in your web browser by browsing to:

http://localhost:8080/

The installation process is now complete.



Stopping and Starting Panhandler

If you wish to stop panhandler from running until you restart it, you can do so with the PowerShell command:

docker stop panhandler





Likewise, this process can be restarted with the command:

docker start panhandler







Upgrading Panhandler

Only one more command is required to upgrade panhandler. The process is to delete the old container, update the image,
and start a new container.

You can delete the old container, running or stopped, with this command:

docker container rm panhandler -f





[image: _images/ph-windows-6.png]
You then can use the ‘docker pull’ and ‘docker run’ commands exactly as they are above to download a newer panhandler
image and start it. The volumes you created earlier will be still be available and assigned to the new container if
you use the commands as they are.



Troubleshooting Windows Install

If you run into either of the following errors when trying to install a Linux distribution:


Installing, this may take a few minutes…
WslRegisterDistribution failed with error: 0x80370102
Error: 0x80370102 The virtual machine could not be started
because a required feature is not installed.




or when trying to run the Docker Desktop GUI:


Hardware assisted virtualization and data execution protection
must be enabled in BIOS.




After verifying that virtualization is enabled in BIOS by opening Task Manager > Performance > Virtualization,
please attempt the following steps.


	If the Windows’ Hyper-V feature is totally disabled or not installed, enable Hyper-V by
opening the PowerShell as administrator and running the following command:




dism.exe /Online /Enable-Feature:Microsoft-Hyper-V /All






	If the Windows’ Hyper-Vfeature is enabled and not working, enable Hypervisor with the
following command and restart your system:




bcdedit /set hypervisorlaunchtype auto






	If the problem persists probably Hyper-V on your system is corrupted, so turn off all Hyper-V
related Windows’ features under Control Panel > Programs > Windows Features. Restart
your system and attempt to enable Hyper-V again.




This troubleshooting guide was found from:


https://stackoverflow.com/questions/39684974/docker-for-windows-error-hardware-assisted-virtualization-and-data-execution-p








          

      

      

    

  

    
      
          
            
  
Example Complex Validation Skillet

This is a more complex example showing how to validate a portion of a PAN-OS configuration. Often times, you need to
check for specific values or apply some simple logic to a portion of the config to determine if it is considered
compliant or not. Skillets of type pan_validation allow you to do just that.

By default, Panhandler will always supply a variable called ‘config’ that contains the NGFW running config. The parse
cmd can be used to pull out and capture specific parts of that config. In this example, we use an advanced xpath query
to return a variable containing a list of all file-blocking profiles that have either the desired ‘file type’ or ‘any’
in the member list. We then use the ‘filter_items’ attribute to further filter the list to only include those items
that have an ‘action’ of block. In this way, you can find objects in the configuration without knowing the full
XPATH.

The snippets with a cmd type of validate is where the actual compliance checks are performed. The test attribute
will be evaluated as a jinja boolean expression. True values are considered to have ‘passed’ this test.

name: complex_validation_323E38BD-D5E0-4ED2-8F39-3AE283B899AD

label: Complex Validation Example - File Blocking Profiles

description: |
  This skillet checks the running config to ensure at least one file-blocking profile exists with the desired
  file type and has an action of 'block'.

type: pan_validation

labels:
  collection:
    - Example Skillets

variables:
  - name: file_type
    description: File Type to Check
    default: torrent
    type_hint: text
    help_text: Which type of file to check to ensure it is being blocked correctly

snippets:
  - name: profile_objects
    cmd: parse
    variable: config
    outputs:
      # This example uses a complex XPATH query to find a list of all file-blocking profile entries that have
      # either the desired file-type as a member or 'any'
      - name: fb_profiles
        capture_list: |
          /config/devices/entry[@name='localhost.localdomain']/vsys/entry[@name='vsys1']/profiles/file-blocking//
          entry/rules/entry/file-type/member[text()="{{ file_type }}" or text()="any"]/../..
        # This further filters the list to *only* include those items that have an action of 'block'
        filter_items: item | element_value('entry.action') == 'block'

  - name: file_blocking_check
    label: Ensure at least one file blocking profile is blocking {{ file_type }}
    test: |
      (
      fb_profiles | length
      )
    documentation_link: https://ironscotch.readthedocs.io/en/docs_dev/viz_guide_panos.html#object-security-profiles-antivirus-blocking








          

      

      

    

  

    
      
          
            
  
Example PAN-OS with Output Capturing

This is a very basic example showing how to ‘get’ a portion of the configuration and capture some returned data into
context variables. These variables are then accessible by subsequent skillets. A common practice is to
build a simple workflow where the first skillet ‘gets’ information from a device, then a template skillet
displays that data using a jinja rendered.


.meta-cnc.yaml

name: example-panos-cmd-get
label: Example of how use the 'get' command for PAN-OS

description: |
  This example Skillet shows how to retrieve information from a PAN-OS device using the 'get' command type. This example
  uses the 'get' command type to retrieve some data, then uses a couple of different capture types to parse out
  different bits from the returned data.

type: panos
labels:
  collection:
    - Example Skillets

snippets:
  - name: system_object
    cmd: get
    xpath: /config/devices/entry[@name="localhost.localdomain"]/deviceconfig/system
    outputs:
      # You always need to specify what you want to capture from the returned data
      # Using 'capture_object' you can convert the returned XML data (default output_type for panos) into a
      # an object that we can manipulate with Jinja later if desired
      - name: results_as_object
        # the '.' capture pattern will convert the full output into an object
        capture_object: .
      # the 'capture_value' attribute will only pull out a specific part of the returned data into a variable.
      # This is good if you only need a smaller part of the returned data as a stand-alone variable
      - name: timezone
        capture_value: timezone
      # 'capture_object' will take an XPath query and construct an object based on the XML returned from the query
      - name: dns_servers_object
        capture_object: dns-setting
      # 'capture_value' also takes an XPath query, but will return the value from the xpath query
      - name: primary_dns_server
        capture_value: dns-setting/servers/primary

  - name: system_xml
    cmd: get
    xpath: /config/devices/entry[@name="localhost.localdomain"]/deviceconfig/system
    # If you would like to have the raw output from the cmd, you can set the 'output_type' to text. This will
    # create a variable in the context named 'results_as_str' with a value containing the full XML output
    # from the 'get' command
    output_type: text
    outputs:
      - name: results_as_str









          

      

      

    

  

    
      
          
            
  
Example PAN-OS Skillet

This is a very basic example showing how to ‘set’ a templatized portion of the configuration. The user will be
prompted two input values. Each one will be interpolated into the ‘element’ and ‘set’ into the NGFW configuration.


.meta-cnc.yaml

name: mySkillet
label: Sets the Login Banner
description: |
    Simple Skillet to demonstrate how to use the 'set' command type for panos skillets

type: panos

labels:
  collection:
    - Example Skillets

variables:

  - name: hostname
    description: Firewall hostname
    default: next-gen-firewall-01
    type_hint: text

  - name: firewall_env
    description: Firewall Environment
    default: develop
    type_hint: dropdown
    dd_list:
      - key: Develop
        value: Develop
      - key: Production
        value: Production

snippets:
  - name: login-banner-226180
    cmd: set
    xpath: /config/devices/entry[@name="localhost.localdomain"]/deviceconfig/system
    element: |-
        &lt;login-banner&gt; Be Aware {{ hostname }} is in {{ firewall_env }}. &lt;/login-banner&gt;







XML Payload

PAN-OS Skillets that load smaller bits of XML configuration into the device, can contain those elements ‘inline’
using the ‘element’ attribute. Larger chunks of XML can also be stored separately on the filesystem using the ‘file’
attribute. The value of the ‘file’ attribute should be a relative path to the file to read and load. In both cases,
jinja variable interpolation is done before being sent to the NGFW.



Snippet Details

The ‘snippets’ section contains all the skillet type specific configuration. Here are the details of each attribute
for ‘panos’ type skillets:


	name - name of this snippet. Useful for debugging and determining which snippets were executed successfully.


	
	cmd - the command to execute. Valid options are

	
	
	op - performs an xml encoded op command

	
	Requires the ‘cmd_str’ attribute










	
	set - performs a ‘set’

	
	Requires ‘xpath’ and either ‘file’ or ‘element’ attributes










	
	edit  - performs an ‘edit’

	
	Requires ‘xpath’ and either ‘file’ or ‘element’ attributes










	
	override - performs an ‘override’

	
	Requires ‘xpath’ and either ‘file’ or ‘element’ attributes










	
	move - performs a ‘move’

	
	Requires the ‘where’ attribute










	
	rename - performs a ‘rename’

	
	Requires the ‘new_name’ attribute










	
	clone - performs a ‘clone’

	
	Requires the ‘new_name’ and ‘xpath_from’ attribute










	
	delete - performs a ‘delete’

	
	Requires the ‘xpath’ attribute










	
	show - performs a ‘show’

	
	Requires the ‘xpath’ attribute










	
	get - performs a ‘get’

	
	Requires the ‘xpath’ attribute










	
	cli - performs ‘cli’ command. ex: show system info

	
	Requires the ‘cmd_str’ attribute










	
	validate - performs a validate

	
	Requires the ‘test’ attribute










	
	validate_xml - validates an xml path with a loaded xml snippet

	
	Requires ‘xpath’ and either ‘file’ or ‘element’ attributes










	
	parse - parses a variable using output capturing

	
	Requires ‘variable’ and ‘outputs’ attributes
























          

      

      

    

  

    
      
          
            
  
Example Python Skillet

This Skillet will launch a python script and capture variables from it’s output. This python script requires it’s
input form the user to be included in the OS Environment rather than on the CLI, so the ‘input_type’ attribute has
been set to ‘env’ rather than the default ‘cli’.

This script also returns JSON encoded structured data. We can use jsonpath_ng [https://github.com/h2non/jsonpath-ng#jsonpath-syntax] expressions to query and capture
specific variables from the output. For more inforation on JSON Path expression, see the jsonpath_ng [https://github.com/h2non/jsonpath-ng#jsonpath-syntax] library.


.meta-cnc.yaml

name: python3_env_input_example

label: Example Python Script Argument Parsing

description: |
  This skillet demonstrates a simple Python script in action with Env based input arguments and list handling.

type: python3

labels:
  collection:
    - Example Skillets

variables:
  - name: USERNAME
    description: Username
    default: admin
    type_hint: text
  - name: PASSWORD
    description: Password
    default:
    type_hint: password

snippets:
  - name: script
    file: input_from_env.py
    input_type: env
    output_type: json
    outputs:
      - name: captured_username
        capture_value: 'output_example.captured_username'
      - name: captured_secret
        capture_value: 'output_example.captured_secret'







Snippet Details

The ‘snippets’ section contains all the skillet type specific configuration. Here are the details of each attribute
for ‘python3’ type skillets:


	name - name of this snippet. Useful for debugging and determining which snippets were executed successfully.


	
	file - relative path to the Python script to execute

	
	for example: file: ../run_reticulating_splines.py










	
	input_type - how input variables from the user will be passed to the script. Valid options are:

	
	env - All variables from the ‘variables’ section will be set in the OS Environment


	
	cli - All variables will be passed in via long form command line arguments

	
	for example $: ./run_reticulating_splines.py –some_argument=”my-hostname” –another_var=”123”
























          

      

      

    

  

    
      
          
            
  
Example REST Skillet

Here is a basic skillet of type ‘rest’. This skillet will query the Palo Alto Networks Licensing API to track
usage of a given authcode. This skillet demonstrates several important aspects of the rest type.


.meta-cnc.yaml

name: track_license_usage
# Label is what will appear in the panhandler UI
label: Track PAN-OS License Usage

description: |
  This skillet demonstrates a simple REST api call to track license usage for a given authcode

# type of skillet (panos, panorama, panorama-gpcs, python3, rest, template, or terraform)
type: rest

# Labels allow grouping and type specific options and are generally only used in advanced cases
# the collection label will determine to which skillet collection this belongs
labels:
  collection: Rest Skillets

# this example only requires two bits of information from the operator, the licensing api_key and the authcode
# to check
variables:
  - name: api_key
    description: Licensing API Key
    default: 0000-0000-0000-0000-0000
    type_hint: text
  - name: authcode
    description: Auth Code to Check
    default: ABC123
    type_hint: text

# The snippets section is required and is a list of REST operators to perform
snippets:
  - name: track
    path: https://api.paloaltonetworks.com/api/license/get
    operation: post
    payload: payload.j2
    headers:
      apiKey: '{{ api_key }}'
      Content-Type: application/x-www-form-urlencoded







Example Payload

Here are the contents of the payload.j2 file

{
"authcode": "{{ authcode }}"
}







Snippet Details

The ‘snippets’ section contains all the type specific configuration. Here are the details of each attribute:


	name - name of the rest operation. This will group any captured outputs later


	
	path - this is the full URL to query - You may include variables in this if desired

	
	for example: path: https://{{ host }}/api/query={{ query_value }}










	operation - the REST type operation to perform, in this case we need to perform a POST


	payload - the relative path to a file to load and parse. If your headers include a ‘Content-Type’ and that type
is ‘application/x-www-form-urlencoded’ or ‘application/json’ this file will be parsed using the ‘json’ library
and passed to the ‘requests.post’ method as a ‘data’ attribute. In most cases, this file will be a simple
json dictionary of key value pairs.


	headers - this is a dictionary of attributes that will be added to the HTTP headers for the request. Each ‘value’
of the key value pair will be variable interpolated. In this case, we need to pass the ‘api_key’ variable captured
from the user.








          

      

      

    

  

    
      
          
            
  
Example REST Skillet with Output Capturing

Here is a basic skillet of type ‘rest’. This skillet will query the Palo Alto Networks Licensing API to track
usage of a given authorization code. This skillet demonstrates several important aspects of the rest type. This example also
demonstrates how to parse the output and capture variables for re-use in another skillet.


.meta-cnc.yaml

name: generate_api_key
label: Generate PAN-OS API Key
type: rest

description: |
  This skillet demonstrates a simple REST api call to a PAN-OS NGFW to generate a new API Key

labels:
  collection: Rest Skillets

variables:
  - name: TARGET_IP
    description: Host
    default: 127.0.0.1
    type_hint: fqdn_or_ip

  - name: TARGET_PORT
    description: Port
    default: 443
    type_hint: number

  - name: TARGET_USERNAME
    description: Username
    default: admin
    type_hint: text

  - name: TARGET_PASSWORD
    description: Password
    default: admin
    type_hint: password

snippets:
  - name: key_gen
    path: https://{{ TARGET_IP }}:{{ TARGET_PORT }}/api/?type=keygen&user={{ TARGET_USERNAME }}&password={{ TARGET_PASSWORD }}
    # this should output capturing which will set a variable called 'api_key' in the workflow, which can be referenced
    # in a skillet called after this one, any variable with a name called api_key will be prepopulated with the
    # value that is captured from the output of this xml api command
    operation: get
    output_type: xml
    outputs:
      - name: api_key
        capture_pattern: result/key







Section Details

The ‘snippets’ section contains all the type specific configuration. Here are the details of each attribute:


	name - name of the rest operation. This will group any captured outputs later


	
	path - this is the full URL to query - You may include variables in this if desired

	
	for example: path: https://{{ host }}/api/query={{ query_value }}










	operation - the REST type operation to perform, in this case we need to perform a POST


	payload - the relative path to a file to load and parse. If your headers include a ‘Content-Type’ and that type
is ‘application/x-www-form-urlencoded’ or ‘application/json’ this file will be parsed using the ‘json’ library
and passed to the ‘requests.post’ method as a ‘data’ attribute. In most cases, this file will be a simple
json dictionary of key value pairs. This is not required for an operation type of ‘get’.


	headers - this is a dictionary of attributes that will be added to the HTTP headers for the request. Each ‘value’
of the key value pair will be variable interpolated. In this case, we need to pass the ‘api_key’ variable captured
from the user. This is not used in this example,


	outputs_type: This is the type of structured data that will be returned from this operation. Valid options are ‘xml’,
‘json’, and ‘base64’.


	
	outputs: A list of dictionaries, each with the following format:

	
	name: variable name that will be placed in the jinja context


	
	capture_pattern: The xpath or jsonpath expression that will be evaluated. In this case, the xpath ‘result/key’

	will return the text found at the XML Element found at this xpath.



















Captured Outputs

Any skillet that is called after this one will have the variable ‘api_key’ pre-populated with the value returned
from this skillet. This allows you to chain together skillets to gather information that can be used later anywhere
jinja variable interpolation is used.





          

      

      

    

  

    
      
          
            
  
Example Terraform Skillet

This Skillet will launch a Terraform project. All user-inputs to the ‘variables’ section will be passed to terraform
as terraform variables. Therefore, the ‘variable’ names should match the terraform variable names exactly. Any
terraform ‘outputs’ will be automatically captured into the context for subsequent skillets to use.


.meta-cnc.yaml

name: azure_single_pavm

label: Azure Single PAN-OS VM-Series

description: Launch a single Single PAN-OS VM-Series in Azure.

type: terraform

labels:
  terraform_image: registry.gitlab.com/panw-gse/as/terraform_tools:0.11
  collection:
    - Example Skillets

variables:
  - name: admin_username
    description: Admin Username
    default: panhandler
    type_hint: text
  - name: admin_password
    description: Admin Password
    default:
    type_hint: password
  - name: hostname
    description: Hostname
    default: panhandler-vm-01
    type_hint: text
  - name: resource_group
    description: Resource Group
    default: panhandler-unique-value-123
    type_hint: text







Terraform Variables

In this case, our variables from the skillet definition file match the variables that terraform expects. Here is a
variables.tf file from this project:

variable "admin_username" {
  description = "PAN-OS NGFW Admin Username"
  default = "admin"
}

variable "admin_password" {
  description = "PAN-OS NGFW Admin Password"
  default = "admin"
}

variable "resource_group" {
  description = "Resource Group to use to build"
  default = "admin"
}

variable "hostname" {
  description = "Host name of the PA VM-Series"
  default = "pavm"
}





Any user input from Panhandler will be passed to terraform as a TFVAR.



Terraform Output Capturing

All terraform ‘outputs’ are automatically captured into the context. Here is a sample ‘outputs.tf’ file:

data "azurerm_public_ip" "pavm_public_ip_address_data" {
  name                = "${azurerm_public_ip.pavm_public_ip.name}"
  resource_group_name = "${azurerm_virtual_machine.pavm.resource_group_name}"
}

output "pavm_public_ip_address" {
  value = "${data.azurerm_public_ip.pavm_public_ip_address_data.ip_address}"
}





This will capture a variable named ‘pavm_public_ip_address’ in the Panhandler skillet context, where it can be used to
pre-populate input fields in other skillets, or passed to other skillets via hidden variables, etc.



Snippet Details

The ‘snippets’ section contains all the type specific configuration. Terraform does not require a ‘snippet’ section
as the skillet definition file is expected to live in the project root of the terraform project.



Terraform State Files

Terraform keeps its state in a special file on disk called the terraform.tfstate file. Panhandler
by default will store the terraform state in a file on the local filesystem in the same directory as the
skillet meta-data file. This allows you to destroy or refresh a previously deployed project from the
Panhandler GUI.


Deploying Multiple Projects with Panhandler

By default, terraform will only deploy exactly what is proscribed in the various terraform files. That
means that if you want to deploy two instances of the same project, you must ‘trick’ terraform into
thinking this is a new deployment and not a modification to a previous one. Panhandler allows you to do
this via the ‘Override’ option. When deploying a terraform project, if an existing terraform.tfstate
file is found, Panhandler will give you the option to ‘override’ the existing state. This will cause
Panhandler to backup the existing state and create a new state for this deployment.


Warning

This is a potentially dangerous operation as Terraform can create many resources in your cloud
environment that are only tied together via a state file. You must be sure you can destroy all the
necessary resources before you continue with the ‘override’ option.





Custom Terraform Images:

Panhandler allows the use of any docker image for Terraform projects. It is often the case that
terraform depends on external binaries or libraries for various plugins. For example, the Azure
provider requires the ‘az’ binary to be available in the system. To avoid deploying Panhandler with
every possible combination of such binaries, you can specify a docker image to use with your
terraform project. This is done via a label called: terraform_image. This label should be
where the docker engine can pull the image. The entry point must be the terraform binary. This
also allows any Terraform version to be supported as well.






          

      

      

    

  

    
      
          
            
  
Example Validation Skillet

This is a very basic example showing validate a portion of a PAN-OS configuration. Often times, you need to check
for specific values or apply some simple logic to a portion of the config to determine if it is considered
compliant or not. Skillets of type pan_validation allow you to do just that.

By default, Panhandler will always supply a variable called ‘config’ that contains the NGFW running config. The parse
cmd can be used to pull out and capture specific parts of that config. In this example, we use an advanced xpath query
to return a variable containing a list of all zone names configured in the running config. Another advanced xpath is
also used to find an ethernet interface with a specific IP Address. That interface is converted to an object using
capture_object.

The snippets with a cmd type of validate is where the actual compliance checks are performed. The test attribute
will be evaluated as a jinja boolean expression. True values are considered to have ‘passed’ this test.


.meta-cnc.yaml

#
# Example Validation Skillet
#
name: example-validate-with-xpath-capture
label: Example of how to use xpath queries to capture specific items of interest.

description: |
  This example Skillet shows how to parse and validate a config using xpath syntax. This example checks the
  configured zones to ensure we do not have one with the attribute name equal to 'does-not-exist'

type: pan_validation
labels:
  collection:
    - Example Skillets
    - Validation

variables:
  # this will allow the user to input a zone name to test
  - name: zone_to_test
    description: Name of the Zone to test for absence
    default: does-not-exist
    type_hint: text
  # as well as an IP address to search for as well
  - name: ip_to_find
    description: IP Address to locate
    default: 10.10.10.10/24
    type_hint: ip_address

snippets:
  - name: parse config variable and capture outputs
    cmd: parse
    variable: config
    outputs:
      # create a variable named 'zone_names' which will be a list of the attribute 'names' from each zone
      # note the use of '//' to select all zones
      # the '@name' will return only the value of the attribute 'name' from each 'entry'
      - name: zone_names
        capture_pattern: /config/devices/entry/vsys/entry/zone//entry/@name
      # note here we can combine an advanced xpath query with 'capture_object'. This will capture
      # the full interface definition from the interface that contains the 'ip_to_find' value
      - name: interface_with_ip
        capture_object: /config/devices/entry/network/interface/ethernet//entry/layer3/ip/entry[@name="{{ ip_to_find }}"]/../..

  # simple test using a jinja expression to verify the 'zone_to_test' variable is not in the 'zone_names' test
  - name: ensure_desired_zone_absent_from_list
    # pan_validation skillet have a default cmd of 'validate'
    cmd: validate
    # note here that you can use jinja variable interpolation just about anywhere
    label: Ensures the {{ zone_to_test }} zone is not configured
    test: zone_test_test not in zone_names
    fail_message: |
      This fail message contains a variable, which is useful for debugging and testing.
      captured values were: {{ zone_names | tojson() }} and {{ interface_with_ip | default('none')| tojson() }}
    # documentation link helps give the user some context about why this test failed or how to manually remediate
    documentation_link: https://github.com/PaloAltoNetworks/skilletlib/blob/develop/docs/source/examples.rst









          

      

      

    

  

    
      
          
            
  
Example Skillet with When Conditionals

This is a basic ‘validation’ Skillet example that uses ‘when’ conditionals to ‘skip’ certain snippets. This can be
useful to perhaps skip validation tests that are not relevant. For example, there is no need to test a sub-element’s
value if the parent element does not exist.


.meta-cnc.yaml

#
# Example When Conditional
#
# In order to properly validate a config, it is often necessary to convert the XML structure to an object, which
# can then be used in jinja expressions to perform basic logic and validation. These examples demonstrate how
# skillets are optimized for this task.
#

name: example-when-conditional
label: Example of how to use 'when' conditional

description: |
  This example Skillet shows how to parse and validate a config using the 'when' conditionals.
  This is useful when you want to test a portion on a configuration, but only 'when' a pre-condition test passes. In
  this example, we will ensure the statistics-service is enabled, but only 'when' the update-schedule element is
  present and defined.

type: pan_validation

labels:
  collection:
    - Example Skillets

variables:
  - name: SOME_VARIABLE
    description: Some VARIABLE
    default: present
    type_hint: text

snippets:
  - name: show_device_system
    cmd: parse
    variable: config
    outputs:
      - name: update_schedule_object
        capture_object: /config/devices/entry[@name='localhost.localdomain']/deviceconfig/system/update-schedule

  - name: update_schedule_configured
    label: Ensure Update Schedules are Configured
    test: update_schedule_object is not none
    documentation_link: https://docs.paloaltonetworks.com/pan-os/8-0/pan-os-new-features/content-inspection-features/telemetry-and-threat-intelligence-sharing

  - name: update_schedule_stats_service_configured
    when: update_schedule_object is not none
    label: Ensure Statistics Service is enabled
    test: update_schedule_object| tag_present('update-schedule.statistics-service')
    documentation_link: https://docs.paloaltonetworks.com/pan-os/8-0/pan-os-new-features/content-inspection-features/telemetry-and-threat-intelligence-sharing









          

      

      

    

  _static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_images/ph-configure-target.png
PAN-OS Utils

Configure Target information
PAN-OS IP:

18.222.9.198
PPAN-OS Username:

admin

PAN-OS Password:

@ Perform Commit

@ Perform Backup






_images/ph-create-skillet.png
Create a Skillet in Cloud Security Framework

Generate From PAN-OS

Query a PAN-OS NGFW or Panorama to generate a Skillet based on
the differences between two configurations. You can compare any
combination of running, candidate, baseline, or previously saved

configurations.

Generate Set Commands From PAN-OS

Query a PAN-OS NGFW or Panorama to generate a list of set
commands based on the differences between two configurations.
You can compare any combination of running, candidate, baseline,
or previously saved configurations.

Generate CLI

Configuration Template

There are several ways to create a Skillet. Choose the option below that best suiites your needs.

Generate From Uploaded Files

Generates a Skillet based on the differences between two uploaded
configuration files. This option is very useful when you do not have
APl access to a given device. Simply export two configuration files
and upload them into this tool to yield a repeatable Skillet.

Upload

Generate Set Commands From Uploaded Files

Generates a st of set commands based on the differences between
two uploaded configuration files. This option is very useful when you
do not have API access to a given device. Simply export two
configuration files and upload them into this tool to yield a

repeatable Set CLI Skillet.
Upload

Copy Skillet From Context





nav.xhtml

    
      Table of Contents


      
        		
          Panhandler
        


        		
          Welcome to Panhandler!
          
            		
              Release History
              
                		
                  V4.0
                


                		
                  V3.1
                


                		
                  V3.0
                


                		
                  V2.2
                


                		
                  Example Skillets
                


              


            


          


        


        		
          Running Panhandler
          
            		
              Quick Start
            


            		
              Running the Panhandler Docker Container
              
                		
                  Using a standard web port
                


                		
                  Using an alternate TCP port
                


                		
                  Using Panhandler with TLS
                


                		
                  Stopping the docker container
                


              


            


            		
              Building Panhandler
            


            		
              Running Panhandler manually
            


            		
              Requirements
            


            		
              Windows Installation
              
                		
                  Install WSL 2
                


                		
                  Install Docker Desktop
                


                		
                  Install Panhandler
                


                		
                  Stopping and Starting Panhandler
                


                		
                  Upgrading Panhandler
                


                		
                  Troubleshooting Windows Install
                


              


            


            		
              Switching between Latest and Develop Containers
              
                		
                  Updating the Running Latest Version
                


                		
                  Updating the Running Develop Version
                


                		
                  Switching from Latest to Develop
                


                		
                  Switching from Develop to Latest
                


              


            


            		
              Keeping Up to Date
              
                		
                  Update Script
                


                		
                  Manually updating the Panhandler Container
                


                		
                  Ensuring your Panhandler container is using the latest image
                


                		
                  Cleaning up old versions
                


              


            


          


        


        		
          Using Panhandler
          
            		
              Access the web portal
            


            		
              Set the Configuration Target
            


            		
              Choose Skillets to View by Collection
            


            		
              Select the Skillet to Load
            


            		
              Understanding what will be pushed
            


            		
              Adding a New Skillet Repository
              
                		
                  Import a New Skillet
                


                		
                  Update a Skillet Repository
                


                		
                  Using a Private Git Repository
                


              


            


            		
              Panhandler Environments
              
                		
                  What is an Environment
                


                		
                  Unlocking Environments
                


              


            


          


        


        		
          Skillets
          
            		
              IronSkillet
            


            		
              Basic concepts
            


            		
              YAML syntax
            


            		
              Metadata details
              
                		
                  Skillet Collections
                


                		
                  Snippet details per Metadata type
                


              


            


            		
              Defining Variables for User input
              
                		
                  Variable Example:
                


              


            


            		
              Hints
              
                		
                  Ensuring all variables are defined
                


                		
                  YAML Syntax
                


                		
                  Jinja Whitespace control
                


              


            


            		
              Creating and Editing Skillets
              
                		
                  Skillet Editor
                


                		
                  Other Tools
                


              


            


            		
              PAN-OS Validation Skillets
            


            		
              Validation Tests
              
                		
                  Variable Capturing
                


                		
                  Capture Pattern
                


                		
                  Capture Object
                


                		
                  Validation Testing
                


                		
                  A more complex example
                


              


            


            		
              PAN-OS Validation Examples
            


            		
              Hints, Tips, Tricks
              
                		
                  Start with a Pass
                


                		
                  Use Tools to explore the config
                


              


            


            		
              Creating and Debugging Validation Skillets
            


            		
              Skillet Debugger
              
                		
                  Manual Debugging with SLI
                


                		
                  Manual Debugging with Python
                


              


            


          


        


        		
          Example Skillet
          
            		
              XML Fragment
            


            		
              Skillet file
            


            		
              Rendered Form
            


          


        


        		
          More Example Skillets
          
            		
              Example Skillets by Type
            


            		
              Example Skillets by Feature
            


            		
              External Skillet Repositories
            


          


        


        		
          When things go wrong
          
            		
              Ensuring you have the latest
            


            		
              Restarting the docker container
            


            		
              Clearing the cache
            


            		
              Cancelling a Task
            


            		
              Removing a Repository
            


            		
              Troubleshooting Docker Skillets
            


            		
              The hammer approach
            


            		
              File a bug
            


          


        


      


    
  

_images/ph-docker-stop.png
[bash-3.2#

[bash-3.24 docker ps
CONTAINER ID IMAGE

PORTS

STATUS
e27639¢9f076 paloaltonetworks/panhandler:latest
Up 28 seconds 0.0.0.0:9999->80/tcp

[bash-3.2#
[bash-3.2

[bash-3.2# docker stop e27639c9f076

e27639¢c9f07%6
[bash-3.2#

COMMAND

NAMES

"/app/cnc/start_app..
vibrant_germain





_images/ph-edit-skillet.png
Skillets
# Label Type Description Controls

1 STIG Validation pan_validation Validates a NGFW configuration for STIG Compliance L E-Jra B |






_images/ph-debug-skillet-button.png
- cancel





_images/ph-debugging.png
Debug output for: Hello World Example (Set hostname)

Here is a lst of all configuraiton elements that will be pushed to the PAN-OS device: 18.222.9.198.

Each section contains the xpath along with the XML contents with all user supplied variables interpolated and included in the output.

device_system

/config/devices/entry[@nane="localhost. localdonain']/deviceconf ig/systen

<hostnane>panos-hello-wor ld</hostname>






_images/ph-env-menu.png
& AWS Demo-A paloalto ~





_images/ph-environments.png
Local Panorama Local Pan-0OS

PaloAltoNetworks Panorama PaloAltoNetworks Pan-0OS VM50

s oo o o s oo o o

Remote Pan-0OS Vistog-Demo-B
afdasdf Vistoq in GCP

s oo o o s [ oS o





_images/ph-env-details.png
Environment: Local Panorama

Secrets stored in this environment

# Key Value Options

1 TARGET_IP 192.168.55.7 Delete Secret
2 TARGET_USERNAME admin Delete Secret
3 TARGET_PASSWORD admin Delete Secret

All stored secrets for Local Panorama






_images/ph-env-locked.png
& paloalto ¥





_images/ph-example-skillet.png
PAN-OS Configuration on

Customize PAN-OS Skillet: Hello World Example (Set hostname)
Firewall hostname:

panos-hello-world






_images/ph-github-branches.png
[ PaloAltoNetworks / Skillets @uUnwatch~ 12 Hstar 0 YFork 2

< Code Issues 1 Pull requests 1 Projects 0 Wiki Insights Settings

Skillets is the default holding place for useful Panhandler skillets. These are usually smaller one-off bits that may not require their it
own repository. Feel free to add to this repository with your own Skillets via a PR.

paloaltonetworks  palo-alto-networks  palo-alto-firewalls  ngfw  panos  panorama  Manage topics

© 33 commits ¥ 2 branches © 0 releases 22 3 contributors 4 Apache-2.0

Branch: master~ | New pull request Create newfile | Uploadfiles = Find File | [SESEIELL IS





_images/ph-github-clone-url.png
22 3 contributors & Apache-2.0

Create newfile | Uploadfiles = Find File | SRR IELPLLCEg

Clone with HTTPS @ Use SSH
Use Git or checkout with SVN using the web URL.

https://github. con/PaloAltoNetworks/s | [

Open in Desktop Download ZIP





_images/ph-repo-details-full.png
Repository Detail for aws-jenkins-exploit

Details

Terraform templates

https://github.com/nembery/terraform.git

Latest Updates

#

2

3

Message
update bootstrap vars
update labels in meta

update label on bootstrap meta-cnc

Commit History for branch: master

Metadata files

#

3

4

Label

Pan-0S Bootstrap for Jenkins Exploit
Pan-0S Bootstrap for Jenkins Exploit
Step 1 AWS Infrastructure Jenkins Exploit

Step 2 Pan-0S configuration for Jenkins Exploit

All Defined metadata files in repository: aws-jenkins-exploit

Update To Latest Remove Repository

Author

Nathan

Nathan

Nathan

Date
2019-02-05 21:44:18-05:00
2019-02-05 21:41:29-05:00

2019-02-05 21:35:26-05:00

Description

Pan-0S Bootstrap for Jenkins Exploit
Pan-0S Bootstrap for Jenkins Exploit
AWS Infrastructure Jenkins Exploit

Pan-0S configuration for Jenkins Exploit






_images/ph-skillet-debugger.png
Test Skillet

This tool will allow you to step through the execution of this skillet snippet by snippet using the provided context. Each snippet can add to the context which will
be passed to the next skillet. This is a great place to explore output capturing and other syntax options before saving your skillet.

Snippet:
{

“name": “parse-01",

“cmd": “parse",

“variable": "config",

“outputs": [

{

“name"" “zones with_protection_profiles”,
“capture value":

Outputs:

user inputs and device

Context: outs |
authentication
information can be

wysername manually added to the
“password": “admin", context

“dos_strategy": *zone",
“internal_zone": “internal’,
“dmz_zone": *internal",

“dos_zone_protection_profile": "Recommended_Zone_Protection’,

&
“Note the device onfiguration s shuays added tothe conext s the confg' variable, however t
is itered out i this iew for breviy.

Step Through Snippets:
parse-01 c » >

Skip Ahead to Snippet:

parse-01






_images/ph-import-repo.png
Import Repository

Enter a valid git url and desired branch below

Repository Name:

Iron-Skillet

Git Repository HTTPS URL:

https://github.com/PaloAltoNetworks/iron-skillet.git

Branch:

master

120






_images/ph-menu.png
PANHANDLER ~

Welcome
Import Skillets
Skillet Collections

Skillet Repositories





_images/ph-unlock-env.png
Unlock Environments

Enter master passphrase to unlock the environments configuration

Master PassPhrase:






_images/ph-user-menu.png
& paloalto

Environments
Create Environment
View Context

Clear Cache

View SSH Public Key

Logout





_images/ph-skillet-editor-edit-snippet.png
Edit PAN-OS Snippet

Snippet ~ When  Outputs  Tags

Name: Command:

cdl_global_config set

XPath:

[config/devices/entry[@name="localhost.localdomain']/deviceconfig/setting/logging

Element:

<enhanced-application-logging>

<enable>yes</enable>
</enhanced-application-logging>
<log-suppression>no</log-suppression>
<logging-service-forwarding>

<enable>yes</enable>

<logging-service-regions>{{ cdl_region }}</logging-service-regions>
</logging-service-forwarding>

P
=






_images/ph-skillet-editor.png
Skillet Editor

Name: Label: Type:

cdl_global_config_panos_xml Cortex Data Lake global configuration using: | panos

Description:

Enable Cortex Data Lake (CDL) with EAL and associated region. Also configures CDL for system and config logs

Labels:
collection : | coL
Variables:
¢ cdiregion : | region assigned to Cortex Data Lake instance
Snippets:
¢ cdlglobal_config : | set
¢ cdlconfig_logging ;| set

¢ cdisystem_logging ;| set






_images/ph-windows-2.png
B Windows PowerShell
“\Users\amall> docker run --rm -it hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly.





_images/ph-windows-3.png





_images/ph-windows-1.png
B Windows PowerShell
Cr\Users\amall> docker ps
AINER 1D THAGE
ES.
“\Users\amall>

&





_images/ph-windows-6.png
B Windows PowerShell

PS C:\Users\amall> docker rm panhandler -
panhandler
PS C:\Users\amall>






_static/ajax-loader.gif





_images/ph-windows-4.png
B Windows PowerShell

PS C:\Users\amall> docker volume list
DRIVER VOLUME NAME
local CNC_VOLUME

local "PANHANDLER_VOLUME
PS C:\Users\amall> o






_images/ph-windows-5.png
B Windows PowerShell
“\Users\amall> docker run ©

name panhandler *
>> - //var/run/docker . sock: /var/run/docker .sock
>> - PANHANDLER_VOLUME: /home/cnc_user *

>> - CNC_VOLUME /home/cnc_user/ .pan_cnc

>> -d -p 8080:8080

restart-aluays *
paloaltonetuorks/panhandler: latest






_static/comment-close.png





_static/comment-bright.png





