
Panhandler Documentation
Release 1.0

sp-solutions

Apr 17, 2019

Contents:

1 Welcome to panhandler! 1

2 Running Panhandler 3
2.1 Running the Panhandler Docker Container . 3
2.2 Building Panhandler . 4
2.3 Running Panhandler manually . 4
2.4 Requirements . 5

3 Using Panhandler 7
3.1 Access the web portal . 7
3.2 Set the Configuration Target . 7
3.3 Choose Skillets to View by Category . 7
3.4 Select the Template to Load . 8

4 Adding a New Skillet Repository 9
4.1 Import a New Skillet . 9
4.2 Update a Skillet Repository . 10

5 Panhandler Metadata Files 13
5.1 Basic concepts . 13
5.2 YAML syntax . 13
5.3 Snippet details . 14
5.4 Hints . 15

6 Example Skillet 17
6.1 XML Fragment . 17
6.2 .meta-cnc file . 18
6.3 Rendered Form . 18

7 Panhandler Environments 19
7.1 What is an Environment . 19
7.2 Unlocking Environments . 19

8 Keeping Up to Date 23
8.1 Ensuring you have the latest docker image . 23

9 About 25

i

10 Disclaimer 27

11 Indices and tables 29

ii

CHAPTER 1

Welcome to panhandler!

Panhandler is a lightweight utility used to aggregate and view or load configuration templates. The primary focus is
PAN-OS devices such as the NGFW or Panorama yet may be extended to other elements such as Terraform and 3rd
party devices.

Using predefined templates helps fast-track the loading of well known or recommended configurations without exten-
sive searching and scrolling through GUI-click documentation. Each collection of configuration templates are known
as skillets that are either preloaded into panhandler at runtime or can be manually added as needed.

Skillets can be based on xml, json, text or any other config type used by each device. They are grouped by output
action including:

• panos: load into a NGFW and commit

• panorama: load into Panorama and commit

• gpcs: load into Panorama with a push to GPCS

• template: simple text render to the screen

To load a configuration into a device with panhandler, the user simply has to add the target information for the device
to be configured, select the skillet to load, enter the form data, and submit. Panhandler then captures the form data,
grabs each configuration element, and loads into the specified device.

1

Panhandler Documentation, Release 1.0

2 Chapter 1. Welcome to panhandler!

CHAPTER 2

Running Panhandler

The recommended way to run panhandler is to pull and run the docker container.

2.1 Running the Panhandler Docker Container

To get the latest version of panhandler as a docker container.

2.1.1 Using a standard web port

docker run -t -p 80:80 paloaltonetworks/panhandler

Then access the UI via http://localhost:80

The default username and password is: paloalto and panhandler

2.1.2 Using an alternate TCP port

If port 80 is unavailable, you can switch to a different port. This example uses port 9999.

docker run -t -p 9999:80 paloaltonetworks/panhandler

Then access the UI via http://localhost:9999

To persist any environments and secrets, you can mount a volume on the /root/.pan_cnc folder like this:

docker run -t -p 9999:80 -v ~/.pan_cnc:/root/.pan_cnc paloaltonetworks/panhandler

Note: The -t option for terminal allows you to view panhandler output data in the terminal window. This is useful for
determining any skillets errors that write to terminal output.

3

http://localhost:80
http://localhost:9999

Panhandler Documentation, Release 1.0

2.1.3 Stopping the docker container

The docker container runs in the background. You can stop the container by using its container ID.

docker ps
docker stop { CONTAINER ID }

Note: If you need to remove the container, enter docker rm { CONTAINER ID } with CONTAINER ID as the ID used
to stop. You must stop the container before deleting.

2.2 Building Panhandler

If you want to build panhandler from source (which is not recommended). You will need to update the git submodules,
install the pip python requirements for both the app and also CNC, create the local db, and create a local user.

git clone https://github.com/PaloAltoNetworks/panhandler.git
cd panhandler
git submodule init
git submodule update
pip install -r requirements.txt
pip install -r cnc/requirements.txt
./cnc/manage.py migrate
./cnc/manage.py shell -c "from django.contrib.auth.models import User; User.objects.
→˓create_superuser('paloalto', 'admin@example.com', 'panhandler')"

2.3 Running Panhandler manually

To start the application on your local machine on port 80:

cd panhandler/cnc
celery -A pan_cnc worker --loglevel=info
manage.py runserver 80

To use a different port, supply a different argument to the runserver command above. In this case, the server will start
up on port 80. Browse to http://localhost in a web browser to begin. The default login credentials are ‘paloalto’ and
‘panhandler’

4 Chapter 2. Running Panhandler

http://localhost

Panhandler Documentation, Release 1.0

2.4 Requirements

Panhandler has been tested to work on Docker version: 18.09.1 (Mac) and 18.09.0 (Linux). Please ensure you have
the latest docker version installed for the best results.

2.4. Requirements 5

Panhandler Documentation, Release 1.0

6 Chapter 2. Running Panhandler

CHAPTER 3

Using Panhandler

Once installed and running, use your web browser to access panhandler.

3.1 Access the web portal

For your local device:

http://localhost:80 (for a standard web port)

http://localhost:9999 (using a defined port, eg. 9999)

The default username and password is: paloalto and panhandler

3.2 Set the Configuration Target

Before choosing skillets to load, set the configuration target IP and username/password credentials. This stores the
device credentials to be used for API access.

Jump to Panhandler Environments to set the environment.

3.3 Choose Skillets to View by Category

From the main panhandler menu, select Templates Library to see a list of skillets to load.

7

http://localhost:80
http://localhost:9999

Panhandler Documentation, Release 1.0

Hit Go for the category of skillets required. Key categories include PAN-OS, Panorama, GPCS, and Templates for
simple text render to screen.

3.4 Select the Template to Load

A list of templates will be available to load into your device. Select the desired item and enter the form data.

The final form will be the target information for API config loading. Confirm the correct values and submit.

Warning: Validate the device type and software version matches the skillet. For example, you will get errors if
trying to load a Panorama template into a firewall. There are also cases where you cannot mix sofware versions
and loading a v8.1 configuration into a v8.0 device will result in errors.

Warning: Some templates may have dependencies requiring elements to be previously loaded into the system or
from other templates. Examples may be certificates, security objects, log forwarding profiles, etc. Check template
documentation and look for any specific dependencies.

Once the load has completed, you can select another template to load to the same device or choose another Environment
to load a configuration to another device.

8 Chapter 3. Using Panhandler

CHAPTER 4

Adding a New Skillet Repository

Panhandler is preloaded with a wide set of skillets yet you may still have to manually add skillet repos.

4.1 Import a New Skillet

From the main menu, choose Import Templates.

The import repository fields allow you to specify the repo name, repo url, and the branch to import.

9

Panhandler Documentation, Release 1.0

Once successful, you will see the complete list of imported repositories including the newly added repo.

At this stage, going to the Template Library will show any additional skillets in their respective categories.

4.2 Update a Skillet Repository

From the main menu, choose Repositories.

Click on Details for the repository of interest.

10 Chapter 4. Adding a New Skillet Repository

Panhandler Documentation, Release 1.0

The repo window will show a description of the repo along with the last few content changes.

Choose Update to Latest to check for and pull template updates.

Note: Already up to date will show that no changes were made to the source skillet and no udpates required.

4.2. Update a Skillet Repository 11

Panhandler Documentation, Release 1.0

12 Chapter 4. Adding a New Skillet Repository

CHAPTER 5

Panhandler Metadata Files

The heart of Panhandler is the .meta-cnc.yaml file. This allows a set of configuration snippets, known as a skillet,
to be shared and consumed as a single unit. For example, to configure a default security profile you may
need to configure multiple different parts of the PAN-OS configuration. Panhandler allows you to group those
different ‘pieces’ and share them among different devices as a single unit. Often times these configuration
bits (affectionately called ‘skillets’) need slight customization before deployment to a new device. The
.meta-cnc.yaml file provides a means to templatize these configurations and present a list of customization
points, or variables, to the end user or consumer.

5.1 Basic concepts

In order to add multiple ‘bits’ of configuration to a device, we need to know the following things:

• XML Configuration fragment with optional variables defined in jinja2 format

• xpath where this xml fragment should be inserted into the candidate configuration

• the order in which these XML fragments must be inserted

• a list of all variables that require user input

• target version requirements. For example: PAN-OS 8.0 or higher

This is all accomplished by adding multiple files each containing an XML configuration fragment and a .meta-cnc.yaml
file that describes the load order, variables, target requirements, etc.

5.2 YAML syntax

Each skillet is structured as a series of files in a single directory. This directory may contain a number of template files
(XML, YAML, JSON, etc) and a .meta-cnc.yaml file. Note the following:

1. A .meta-cnc.yaml file that is formatted with using YAML with the following format:

13

Panhandler Documentation, Release 1.0

name: config_set_name
description: config_set description
extends: name_of_required_major_skillet
variables:
- name: INF_NAME
description: Interface Name
default: Ethernet1/1
type_hint: text

snippets:
- xpath: some/xpath/value/here
name: config_set_knickname
file: filename of xml snippet to load that should exist in this directory

2. Multiple configuration files. Each should contain a valid template fragment and may use jinja2 variables. These
templates may be XML, JSON, YAML, Text, etc. For PAN-OS devices, these are XML fragments from specific
stanzas of the PAN-OS device configuration tree.

5.3 Snippet details

Each .meta-cnc.yaml file must contain the following top-level keys:

• name: name of this configuration set

• description: Short description

• extends: name of another skillet that is a requirement for this one. PAN-OS and Panorama types will load
extends prior to loading this one

• variables: Described in detail below

• snippets: a dict containing the following keys

– name: knickname of the skillet

– file: relative path to the configuration template

– xpath (optional): XPath where this fragment belongs in the target OS hierarchy (for XML skillets)

Note: Each Metadata file type has it’s own format for the ‘snippets’ section. file and xpath are only used in panos and
panorama types. Other types such as template or rest may have a different format.

5.3.1 Snippet details per Metadata type

Required fields for each metadata type is listed below:

• panos, panorama, panorama-gpcs

– name - name of this snippet

– file - path to the XML fragment to load and parse

– xpath - XPath where this fragment belongs

• template

– name - name of this snippet

– file - path to the jinja2 template to load and parse

14 Chapter 5. Panhandler Metadata Files

Panhandler Documentation, Release 1.0

• terraform

– None - snippets are not used for terraform

• rest

– name - name of the snippet

– path - REST URL path component (path: /api/?type=keygen&user={{ username }}&password={{
password }})

– operation - type of REST operation (GET, POST, DELETE, etc)

– payload - path to a jinja2 template to load and parse to be send as POSTed payload

– content_type - Content-Type header to add. For example: application/json

– accepts_type - Accepts-Type header to add. For examle: /

Each skillet can define nulitple variables that will be interpolated using the Jinja2 templating language. Each variable
defined in the variables list should define the following:

1. name: The name of the variable found in the skillets. For example:

{{ name }}

2. description: A brief description of the variable and it’s purpose in the configuration

3. label: Human friendly label to display to user

4. extends: Name of another skillet to load

5. default: A valid default value which will be used if not value is provided by the user

6. type_hint: Used to constrain the types of values accepted. May be implemented by additional third party tools.
Examples are text, text_field, ip_address, password, dropdown, and checkbox.

5.4 Hints

5.4.1 Ensuring all variables are defined

When working with a large amount of configuration temlates, it’s easy to miss a variable definition. Use this one-liner
to find them all.

cd into a skillet dir and run this to find all vars

grep -r '{{' . | cut -d'{' -f3 | awk '{ print $1 }' | sort -u

5.4.2 YAML Syntax

YAML is notoriously finicky about whitespace and formatting. While it’s a relatively simple structure and easy to
learn, it can often also be frustrating to work with, especially for large files. A good reference to use to check your
YAML syntax is the YAML Lint site.

5.4. Hints 15

http://www.yamllint.com/

Panhandler Documentation, Release 1.0

16 Chapter 5. Panhandler Metadata Files

CHAPTER 6

Example Skillet

In this example, we will create a skillet that allows the user to customize a single variable.

6.1 XML Fragment

First, we’ll extract the parts of the configuration that comprise this ‘unit’ of configuration changes (a skillet). For
example, this portion of the configuration describes the log-settings we would like to modify:

<system>
<match-list>
<entry name="dhcp-log-match">

<send-syslog>
<member>mgmt-interface</member>

</send-syslog>
<filter>(eventid eq lease-start)</filter>

</entry>
</match-list>

</system>
<syslog>

<entry name="mgmt-interface">
<server>

<entry name="mgmt-intf">
<transport>UDP</transport>
<port>514</port>
<format>BSD</format>
<server>{{ MGMT_IP }}</server>
<facility>LOG_USER</facility>

</entry>
</server>

</entry>
</syslog>

Notice here we have defined one variable: MGMT_IP. This will allow the user to insert their own managemet ip when
deploying.

17

Panhandler Documentation, Release 1.0

6.2 .meta-cnc file

name: example_log_setting
label: Log Setting Example
description: Example log setting to configure syslog
type: panos
extends:

labels:
service_type: userid

variables:
- name: MGMT_IP
description: NGFW management IP address
default: 192.168.0.1
type_hint: ip_address

snippets:
- name: log_settings
xpath: /config/shared/log-settings
file: log_settings.xml

In this file, we give some basic information about what this skillet will do, what configuration bits will be applied,
and what variables the user can customize. Notice in the ‘variables’ section, we specify a variable entry with a ‘name’
that matches the variable defined in the XML fragment. The ‘snippets’ section will inform Panhandler where in the
configuration this fragment should be inserted (xpath) and where to find the fragment (file).

6.3 Rendered Form

This .meta-cnc.yaml will produce the following web form in Panhandler:

18 Chapter 6. Example Skillet

CHAPTER 7

Panhandler Environments

Often times, it is desirable to store environment specific data outside of a git repository. Panhandler provides a
mechanism to do this using ‘Environments’.

7.1 What is an Environment

An environment is a collection of secrets that can be loaded and managed as a unit. For example, you may want to
keep all AWS related secrets together in an environment called ‘AWS’. When panhandler displays a web form from a
configuration set, any variables from the configuration template that share a name with a secret in the currently loaded
environment, that value will be pre-populated.

This is especially useful if you have multiple environments such as ‘AWS-QA’, ‘AWS-PROD’, and ‘AWS-DEV’.

7.2 Unlocking Environments

To load an environment, click on the ‘lock’ icon on the right of the navigation bar.

You will be presented with an unlock password dialog. This password will be used to protect any secrets you store in
your environments in an encrypted file in your home directory. If this encrypted file does not already exist it will be
created and protected with the password you enter here.

19

Panhandler Documentation, Release 1.0

Once unlocked, you can manage your environments by creating new ones, cloning, configuring, or deleting existing
ones.

Choosing the ‘Configure’ option on an environment allows you to add, remove, or overwrite secrets stored within
them.

Choosing to ‘Load’ an environment makes that env available to pre-populate template fields. It will also be available
as a ‘pop-over’ that you can use to copy and paste secrets into template fields. This is useful when you want to store
secrets like API_KEYS

Note: Template variables that share the same ‘name’ as a secret in the currently loaded environment will be pre-
populated with the value of that secret. You can find the exact name of a specific variable field by looking at the
‘.meta-cnc.yaml’ file for that form.

20 Chapter 7. Panhandler Environments

Panhandler Documentation, Release 1.0

7.2. Unlocking Environments 21

Panhandler Documentation, Release 1.0

22 Chapter 7. Panhandler Environments

CHAPTER 8

Keeping Up to Date

As panhandler is a quickly evolving project with new features added frequently, it is advisable to ensure you update to
the latest periodically.

8.1 Ensuring you have the latest docker image

Panhandler is primarily distributed as a docker image on Docker Hub. To ensure you have the latest version, check for
new releases here. To launch a newer version via docker:

docker run -p 80:80 paloaltonetworks/panhandler -d

This will create a container based on the latest image tag. Versioned panhandler images are also available and can be
found on Docker Hub.

Note: You must periodically pull new images from Docker hub to ensure you have the latest software with new
features and bug fixes.

To ensure you have the most up to date software, perform a docker pull and specify the ‘latest’ tag.

docker pull paloaltonetworks/panhandler:latest
docker run -p 80:80 paloaltonetworks/panhandler:latest -d

23

https://cloud.docker.com/u/paloaltonetworks/repository/docker/paloaltonetworks/panhandler/general
https://cloud.docker.com/u/paloaltonetworks/repository/docker/paloaltonetworks/panhandler/general

Panhandler Documentation, Release 1.0

24 Chapter 8. Keeping Up to Date

CHAPTER 9

About

Panhandler is a tool to manage and share PAN-OS configuration sets. A configuration set can be a full device con-
figuration, or a set of configuration elements. Panhandler allows you to import git repositories that contain one or
more configuration templates. Each template contains a set of configuration elements and variables that can be cus-
tomized for each deployment. Variables are presented in an auto-generated web form for an operator to complete.
Once complete, the template is rendered and pushed to a PAN-OS device.

25

Panhandler Documentation, Release 1.0

26 Chapter 9. About

CHAPTER 10

Disclaimer

This software is provided without support, warranty, or guarantee. Use at your own risk.

27

Panhandler Documentation, Release 1.0

28 Chapter 10. Disclaimer

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

29

	Welcome to panhandler!
	Running Panhandler
	Running the Panhandler Docker Container
	Building Panhandler
	Running Panhandler manually
	Requirements

	Using Panhandler
	Access the web portal
	Set the Configuration Target
	Choose Skillets to View by Category
	Select the Template to Load

	Adding a New Skillet Repository
	Import a New Skillet
	Update a Skillet Repository

	Panhandler Metadata Files
	Basic concepts
	YAML syntax
	Snippet details
	Hints

	Example Skillet
	XML Fragment
	.meta-cnc file
	Rendered Form

	Panhandler Environments
	What is an Environment
	Unlocking Environments

	Keeping Up to Date
	Ensuring you have the latest docker image

	About
	Disclaimer
	Indices and tables

